Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Cutwidth Parameterized by Vertex Cover

  • Conference paper
Parameterized and Exact Computation (IPEC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7112))

Included in the following conference series:

Abstract

We study the Cutwidth problem, where input is a graph G, and the objective is find a linear layout of the vertices that minimizes the maximum number of edges intersected by any vertical line inserted between two consecutive vertices. We give an algorithm for Cutwidth with running time O(2k n O(1)). Here k is the size of a minimum vertex cover of the input graph G, and n is the number of vertices in G. Our algorithm gives an O(2n/2 n O(1)) time algorithm for Cutwidth on bipartite graphs as a corollary. This is the first non-trivial exact exponential time algorithm for Cutwidth on a graph class where the problem remains NP-complete. Additionally, we show that Cutwidth parameterized by the size of the minimum vertex cover of the input graph does not admit a polynomial kernel unless \(\ensuremath{\textrm{NP} \subseteq \textrm{coNP}/\textrm{poly}}\). Our kernelization lower bound contrasts the recent result of Bodlaender et al.[ICALP 2011] that Treewidth parameterized by vertex cover does admit a polynomial kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adolphson, D., Hu, T.C.: Optimal linear ordering. SIAM J. Appl. Math. 25, 403–423 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACM 9(1), 61–63 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  3. Björklund, A.: Determinant sums for undirected hamiltonicity. In: FOCS, pp. 173–182 (2010)

    Google Scholar 

  4. Blin, G., Fertin, G., Hermelin, D., Vialette, S.: Fixed-parameter algorithms for protein similarity search under mrna structure constraints. Journal of Discrete Algorithms 6, 618–626 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for kernelization lower bounds. In: Schwentick, T., DĂŒrr, C. (eds.) STACS. LIPIcs, vol. 9, pp. 165–176. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

    Google Scholar 

  6. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Bodlaender, H.L., Thomasse, S., Yeo, A.: Analysis of data reduction: Transformations give evidence for non-existence of polynomial kernels, technical Report UU-CS-2008-030, Institute of Information and Computing Sciences, Utrecht University, Netherlands (2008)

    Google Scholar 

  8. Botafogo, R.A.: Cluster analysis for hypertext systems. In: SIGIR, pp. 116–125 (1993)

    Google Scholar 

  9. Chung, M., Makedon, F., Sudborough, I., Turner, J.: Polynomial time algorithms for the min cut problem on degree restricted trees. SIAM Journal on Computing 14, 158–177 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diaz, J., Penrose, M., Petit, J., Serna, M.: Approximating layout problems on random geometric graphs. Journal of Algorithms 39, 78–117 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph Layout Problems Parameterized by Vertex Cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and minimum fill-in. SIAM J. Comput. 38(3), 1058–1079 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: STOC 2008: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 133–142. ACM (2008)

    Google Scholar 

  14. Gavril, F.: Some np-complete problems on graphs, pp. 91–95 (1977)

    Google Scholar 

  15. Heggernes, P., van ’t Hof, P., Lokshtanov, D., Nederlof, J.: Computing the Cutwidth of Bipartite Permutation Graphs in Linear Time. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 75–87. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Heggernes, P., Lokshtanov, D., Mihai, R., Papadopoulos, C.: Cutwidth of Split Graphs, Threshold Graphs, and Proper Interval Graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 218–229. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal of the Society for Industrial and Applied Mathematics 10(1), 196–210 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jansen, B.M.P., Kratsch, S.: Data reduction for graph coloring problems. CoRR abs/1104.4229 (2011)

    Google Scholar 

  19. Junguer, M., Reinelt, G., Rinaldi, G.: The travelling salesman problem. In: Handbook on Operations Research and Management Sciences, pp. 225–330 (1995)

    Google Scholar 

  20. Karger, D.R.: A randomized fully polynomial time approximation scheme for the all-terminal network reliability problem. SIAM J. Comput. 29(2), 492–514 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion. Oper. Res. Lett. 1, 49–51 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leighton, F., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACM 46, 787–832 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Makedon, F., Sudborough, I.H.: On minimizing width in linear layouts. Discrete Applied Mathematics 23, 243–265 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Monien, B., Sudborough, I.H.: Min cut is np-complete for edge weighted trees. Theoretical Computer Science 58, 209–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mutzel, P.: A Polyhedral Approach to Planar Augmentation and Related Problems. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 494–507. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  26. Suchan, K., Villanger, Y.: Computing Pathwidth Faster than 2. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 324–335. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth ii: Algorithms for partial w-trees of bounded degree. Journal of Algorithms 56, 24–49 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Yannakakis, M.: A polynomial algorithm for the min cut linear arrangement of trees. Journal of the ACM 32, 950–988 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yuan, J., Zhou, S.: Optimal labelling of unit interval graphs. Appl. Math. J. Chinese Univ. Ser. B (English edition) 10, 337–344 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S. (2012). On Cutwidth Parameterized by Vertex Cover. In: Marx, D., Rossmanith, P. (eds) Parameterized and Exact Computation. IPEC 2011. Lecture Notes in Computer Science, vol 7112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28050-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28050-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28049-8

  • Online ISBN: 978-3-642-28050-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics