Abstract
We study the Cutwidth problem, where input is a graph G, and the objective is find a linear layout of the vertices that minimizes the maximum number of edges intersected by any vertical line inserted between two consecutive vertices. We give an algorithm for Cutwidth with running time O(2k n O(1)). Here k is the size of a minimum vertex cover of the input graph G, and n is the number of vertices in G. Our algorithm gives an O(2n/2 n O(1)) time algorithm for Cutwidth on bipartite graphs as a corollary. This is the first non-trivial exact exponential time algorithm for Cutwidth on a graph class where the problem remains NP-complete. Additionally, we show that Cutwidth parameterized by the size of the minimum vertex cover of the input graph does not admit a polynomial kernel unless \(\ensuremath{\textrm{NP} \subseteq \textrm{coNP}/\textrm{poly}}\). Our kernelization lower bound contrasts the recent result of Bodlaender et al.[ICALP 2011] that Treewidth parameterized by vertex cover does admit a polynomial kernel.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adolphson, D., Hu, T.C.: Optimal linear ordering. SIAM J. Appl. Math. 25, 403â423 (1973)
Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACMÂ 9(1), 61â63 (1962)
Björklund, A.: Determinant sums for undirected hamiltonicity. In: FOCS, pp. 173â182 (2010)
Blin, G., Fertin, G., Hermelin, D., Vialette, S.: Fixed-parameter algorithms for protein similarity search under mrna structure constraints. Journal of Discrete Algorithms 6, 618â626 (2008)
Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for kernelization lower bounds. In: Schwentick, T., DĂŒrr, C. (eds.) STACS. LIPIcs, vol. 9, pp. 165â176. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)
Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 437â448. Springer, Heidelberg (2011)
Bodlaender, H.L., Thomasse, S., Yeo, A.: Analysis of data reduction: Transformations give evidence for non-existence of polynomial kernels, technical Report UU-CS-2008-030, Institute of Information and Computing Sciences, Utrecht University, Netherlands (2008)
Botafogo, R.A.: Cluster analysis for hypertext systems. In: SIGIR, pp. 116â125 (1993)
Chung, M., Makedon, F., Sudborough, I., Turner, J.: Polynomial time algorithms for the min cut problem on degree restricted trees. SIAM Journal on Computing 14, 158â177 (1985)
Diaz, J., Penrose, M., Petit, J., Serna, M.: Approximating layout problems on random geometric graphs. Journal of Algorithms 39, 78â117 (2001)
Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph Layout Problems Parameterized by Vertex Cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294â305. Springer, Heidelberg (2008)
Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and minimum fill-in. SIAM J. Comput. 38(3), 1058â1079 (2008)
Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: STOC 2008: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 133â142. ACM (2008)
Gavril, F.: Some np-complete problems on graphs, pp. 91â95 (1977)
Heggernes, P., van ât Hof, P., Lokshtanov, D., Nederlof, J.: Computing the Cutwidth of Bipartite Permutation Graphs in Linear Time. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 75â87. Springer, Heidelberg (2010)
Heggernes, P., Lokshtanov, D., Mihai, R., Papadopoulos, C.: Cutwidth of Split Graphs, Threshold Graphs, and Proper Interval Graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 218â229. Springer, Heidelberg (2008)
Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal of the Society for Industrial and Applied Mathematics 10(1), 196â210 (1962)
Jansen, B.M.P., Kratsch, S.: Data reduction for graph coloring problems. CoRR abs/1104.4229 (2011)
Junguer, M., Reinelt, G., Rinaldi, G.: The travelling salesman problem. In: Handbook on Operations Research and Management Sciences, pp. 225â330 (1995)
Karger, D.R.: A randomized fully polynomial time approximation scheme for the all-terminal network reliability problem. SIAM J. Comput. 29(2), 492â514 (1999)
Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion. Oper. Res. Lett. 1, 49â51 (1982)
Leighton, F., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACMÂ 46, 787â832 (1999)
Makedon, F., Sudborough, I.H.: On minimizing width in linear layouts. Discrete Applied Mathematics 23, 243â265 (1989)
Monien, B., Sudborough, I.H.: Min cut is np-complete for edge weighted trees. Theoretical Computer Science 58, 209â229 (1988)
Mutzel, P.: A Polyhedral Approach to Planar Augmentation and Related Problems. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 494â507. Springer, Heidelberg (1995)
Suchan, K., Villanger, Y.: Computing Pathwidth Faster than 2. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 324â335. Springer, Heidelberg (2009)
Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth ii: Algorithms for partial w-trees of bounded degree. Journal of Algorithms 56, 24â49 (2005)
Yannakakis, M.: A polynomial algorithm for the min cut linear arrangement of trees. Journal of the ACMÂ 32, 950â988 (1985)
Yuan, J., Zhou, S.: Optimal labelling of unit interval graphs. Appl. Math. J. Chinese Univ. Ser. B (English edition) 10, 337â344 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S. (2012). On Cutwidth Parameterized by Vertex Cover. In: Marx, D., Rossmanith, P. (eds) Parameterized and Exact Computation. IPEC 2011. Lecture Notes in Computer Science, vol 7112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28050-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-28050-4_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28049-8
Online ISBN: 978-3-642-28050-4
eBook Packages: Computer ScienceComputer Science (R0)