Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

tsdb: A Compressed Database for Time Series

  • Conference paper
Traffic Monitoring and Analysis (TMA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7189))

Included in the following conference series:

Abstract

Large-scale network monitoring systems require efficient storage and consolidation of measurement data. Relational databases and popular tools such as the Round-Robin Database show their limitations when handling a large number of time series. This is because data access time greatly increases with the cardinality of data and number of measurements. The result is that monitoring systems are forced to store very few metrics at low frequency in order to grant data access within acceptable time boundaries.

This paper describes a novel compressed time series database named tsdb whose goal is to allow large time series to be stored and consolidated in realtime with limited disk space usage. The validation has demonstrated the advantage of tsdb over traditional approaches, and has shown that tsdb is suitable for handling a large number of time series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Box, G., Jenkins, G.: Time Series Analysis: Forecasting and Control. Prentice Hall PTR (1994) ISBN: 0130607746

    Google Scholar 

  2. StumbleUpon, OpenTSDB: Open Time Series Database, http://opentsdb.net

  3. Oetiker, T.: RRDtool: Round Robin Database Tool, http://oss.oetiker.ch/rrdtool/

  4. Deri, L., et al.: Monitoring Networks Using ntop. In: Proc. of IM 2001 (May 2001)

    Google Scholar 

  5. Vlachos, M., Kozat, S., Yu, P.S.: Optimal Distance Bounds for Fast Search on Compressed Time-series Query Logs. TWEB 4(2) (2010)

    Google Scholar 

  6. Salomon, D.: Data Compression: The Complete Reference. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  7. Rice, R.F., Plaunt, R.: Adaptive Variable-Length Coding for Efficient Compression of Spacecraft Television Data. IEEE Transactions on Communications 16(9), 889–897 (1971)

    Article  Google Scholar 

  8. Harizopoulos, S., Liang, V., Abadi, D.J., Madden, S.: Performance Tradeoffs in Read-Optimized Databases. In: Proc. of VLDB (2006)

    Google Scholar 

  9. Anh, V.N., Moffat, A.: Inverted Index Compression Using Word-Aligned Binary Codes. Journal of Information Retrieval 8(1), 151–166 (2005)

    Article  Google Scholar 

  10. Zukowski, M., et al.: Super-Scalar RAMCPU Cache Compression. In: Proc. of International Conference on Data Engineering, ICDE (2006)

    Google Scholar 

  11. Abadi, D., Madden, S., Ferreira, M.: Integrating Compression and Execution in Column-Oriented Database Systems. In: Proc. of 32nd ACM SIGMOD International Conference on Management of Data (2006)

    Google Scholar 

  12. Reinhold, L.M.: QuickLZ (2011), http://www.quicklz.com

  13. Olson, M., Bostic, K., Seltzer, M.: Berkeley DB. In: Proc. of Usenix Annual Technical Conference (1999)

    Google Scholar 

  14. Mullins, C.S.: Database Administration: The Complete Guide to Practices and Procedures (2002) ISBN: 0-201-741296

    Google Scholar 

  15. Rafiei, D., Mendelzon, A.: Similarity-based queries for time series data. In: Proc. of the ACM SIGMOD (1997)

    Google Scholar 

  16. Brillinger, D.R.: Time Series: Data Analysis and Theory. Society for Industrial and Applied Mathematics (2001) ISBN-10: 0898715016

    Google Scholar 

  17. Krishnamurthy, S., et al.: TelegraphCQ: An Architectural Status Report. IEEE Data Engineering Bulletin 26(1) (March 2003)

    Google Scholar 

  18. Zhao, X.: High Performance Algorithms for Multiple Streaming Time Series, Ph.D. Dissertation, New York University (2006)

    Google Scholar 

  19. Shieh, J., Keogh, E.: iSAX: Indexing and Mining Terabyte Sized Time Series. In: Proc. of ACM SIGKDD (2008)

    Google Scholar 

  20. Tiwari: Professional NoSQL. John Wiley and Sons (2011) ISBN: 047094224X

    Google Scholar 

  21. Zaitsev, P.: Why MySQL could be slow with large tables? (June 2006), http://www.mysqlperformanceblog.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 IFIP International Federation for Information Processing

About this paper

Cite this paper

Deri, L., Mainardi, S., Fusco, F. (2012). tsdb: A Compressed Database for Time Series. In: Pescapè, A., Salgarelli, L., Dimitropoulos, X. (eds) Traffic Monitoring and Analysis. TMA 2012. Lecture Notes in Computer Science, vol 7189. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28534-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28534-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28533-2

  • Online ISBN: 978-3-642-28534-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics