Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Human Age Estimation and Sex Classification

  • Chapter
Video Analytics for Business Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 409))

Abstract

Collecting demographic information from the customers, such as age and sex, is very important for marketing and customer group analysis. For instance, the marketing study has an interest to know how many people visited a shopping mall, and what is the distribution of the customers, such as how many males and females; how many young, adult, and senior people. Instead of hiring human workers to observe the customers, a computational system might be developed to analyze people who appeared in images and videos captured by cameras installed in a shopping mall, and then gather the demographic information. To develop a real system for age estimation and sex classification, many essential issues have to be addressed. In this chapter, a detailed introduction of the computational approaches to human age estimation and sex classification will be given. Various methods for feature extraction and learning will be described. Major challenges and future research directions will also be discussed. The goal is to inspire new research and encourage deeper investigation towards developing a working system for business intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Face Recognition Homepage, http://face-rec.org/

  2. Intellio visiscanner retail customer analytics solution, http://www.intellio.eu/visiscanner.php

  3. NEC develops an ultra-compact sensor that estimates age and gender, http://tweetbuzz.jp/entry/56752845/www.nec.co.jp/press/en/1105/3101.html

  4. Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Baluja, S., Rowley, H.A.: Boosting sex identification performance. Intl. J. of Comput. Vision 71(1), 111–119 (2007)

    Article  Google Scholar 

  6. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press (1996)

    Google Scholar 

  7. Bruce, V., Burton, A., Hanna, E., Healey, P., Mason, O.: Sex discrimination: How do we tell the difference between male and female faces? Perception 22, 131–152 (1993)

    Article  Google Scholar 

  8. Brunelli, R., Poggio, T.: Hyperbf networks for gender classification. In: Proc. DARPA Image Understanding Workshop, pp. 311–314 (1992)

    Google Scholar 

  9. Cai, D., He, X., Han, J., Zhang, H.: Orthogonal laplacianfaces for face recognition. IEEE Trans. on Image Processing 15, 3608–3614 (2006)

    Article  Google Scholar 

  10. Cai, D., He, X., Zhou, K., Han, J., Bao, H.: Locality sensitive discriminant analysis. In: Proc. Int. Joint Conf. on Artificial Intell. (2007)

    Google Scholar 

  11. Cao, L., Dikmen, M., Fu, Y., Huang, T.: Gender recognition from body. In: ACM Multimedia (2008)

    Google Scholar 

  12. Chang, Y., Wang, Y., Ricanek, K., Chen, C.: Feature selection for improved automatic gender classification. In: IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 29–35 (2011)

    Google Scholar 

  13. Chellappa, R., Sinha, P., Phillips, P.: Face recognition by computers and humans. IEEE Computer 43(2), 46–55 (2010)

    Article  Google Scholar 

  14. Chellappa, R., Turaga, P.: Recent advances in age and height estimation from still images and video. In: IEEE Conf. on AFGR (2011)

    Google Scholar 

  15. Chen, C., Chang, Y., Ricanek, K., Wang, Y.: Face age estimation using model selection. In: IEEE CVPR Workshop, pp. 93–99 (2010)

    Google Scholar 

  16. Christensen, K., Doblhammer, G., Rau, R., Vaupel, J.: Ageing populations: the challenges ahead. Lancet 374, 1196–1208 (2009)

    Article  Google Scholar 

  17. Christensen, K., Johnson, T., Vaupel, J.: The quest for genetic determinants of human longevity: challenges and insights. Nature Reviews Genetics 7, 436–448 (2006)

    Article  Google Scholar 

  18. Christensen, K., Thinggaard, M., McGue, M., Rexbye, H., Hjelmborg, J., Aviv, A., Gunn, D., Ouderaa, F., Vaupel, J.: Perceived age as clinically useful biomarker of ageing: Cohort study. British Medical Journal 339, b5262 (2009)

    Article  Google Scholar 

  19. Comon, P.: Independent component analysis: A new concept? Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  20. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)

    Google Scholar 

  21. Costen, N., Brown, M., Akamastu, S.: Sparse models for gender classification. In: IEEE Int’l. Conf. on Automatic Face and Gesture Recognition (2004)

    Google Scholar 

  22. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conf. on Comput. Vision and Pattern Recognit., pp. 886–893 (2005)

    Google Scholar 

  23. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. of the Royal Statistical Society, Series B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  24. Farkas, L.: Anthropometry of the Head and Face. Raven Press, New York (1994)

    Google Scholar 

  25. FGNET: The fg-net aging database (2002), http://www.fgnet.rsunit.com/

  26. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Proc. the Thirteen International Conference on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  27. Fu, Y., Guo, G.D., Huang, T.S.: Soft biometrics for video surveillance. In: Ma, Y., Qian, G. (eds.) Intelligent Video Surveillance: Systems and Technology. Taylor and Francis Group, LLC (2009)

    Google Scholar 

  28. Fu, Y., Guo, G.D., Huang, T.S.: Age synthesis and estimation via faces: A survey. IEEE Trans. Pattern Analysis and Machine Intelligence 32(11), 1955–1976 (2010)

    Article  Google Scholar 

  29. Fu, Y., Huang, T.S.: Human age estimation with regression on discriminative aging manifold. IEEE Trans. on Multimedia 10(4), 578–584 (2008)

    Article  Google Scholar 

  30. Fu, Y., Xu, Y., Huang, T.S.: Estimating human ages by manifold analysis of face pictures and regression on aging features. In: IEEE Conf. on Multimedia and Expo., pp. 1383–1386 (2007)

    Google Scholar 

  31. Fukai, H., Takimoto, H., Mitsukura, Y., Fukumi, M.: Apparent age estimation system based on age perception. In: SICE Annual Conference, pp. 2808–2812 (2007)

    Google Scholar 

  32. Gallagher, A., Chen, T.: Understanding images of groups of people. In: CVPR, pp. 256–263 (2009)

    Google Scholar 

  33. Gao, F., Ai, H.: Face age classification on consumer images with gabor feature and fuzzy lda method. In: The 3rd IAPR Intl. Conf. on Biometrics (2009)

    Google Scholar 

  34. Gao, W., Ai, H.: Face gender classification on consumer images in a multiethnic environment. In: Intl. Conf. on Biometrics (2009)

    Google Scholar 

  35. Geng, X., Zhou, Z.H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. IEEE Trans. on PAMI 29(12), 2234–2240 (2007)

    Article  Google Scholar 

  36. Geng, X., Zhou, Z.H., Zhang, Y., Li, G., Dai, H.: Learning from facial aging patterns for automatic age estimation. In: ACM Conf. on Multimedia, pp. 307–316 (2006)

    Google Scholar 

  37. Golomb, B., Lawrence, D., Sejnowski, T.: Sexnet: A neural network identifies sex from human faces. In: Advances in Neural Information Processing Systems, vol. 3, pp. 572–577 (1991)

    Google Scholar 

  38. Graf, A., Wichmann, F.: Gender classification of human faces. In: Int’l Workshop on Biologically Motivated Computer Vision, pp. 491–500 (2002)

    Google Scholar 

  39. Gunay, A., Nabiyev, V.V.: Automatic detection of anthropometric features from facial images. In: IEEE Conf. on Signal Processing and Communications Applications (2007)

    Google Scholar 

  40. Gunay, A., Nabiyev, V.V.: Automatic age classification with LBP. In: Proc. Int’l Symp. Computer and Information Science (2008)

    Google Scholar 

  41. Guo, G.D., Dyer, C., Fu, Y., Huang, T.S.: Is gender recognition affected by age? In: IEEE International Workshop on Human-Computer Interaction, pp. 2032–2039 (2009)

    Google Scholar 

  42. Guo, G.D., Fu, Y., Dyer, C., Huang, T.S.: Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. Image Processing 17(7), 1178–1188 (2008)

    Article  MathSciNet  Google Scholar 

  43. Guo, G.D., Fu, Y., Dyer, C., Huang, T.S.: A probabilistic fusion approach to human age prediction. In: International Workshop on Semantic Learning Applications in Multimedia (2008)

    Google Scholar 

  44. Guo, G.D., Fu, Y., Huang, T., Dyer, C.: Locally adjusted robust regression for human age estimation. In: IEEE Workshop on Application of Computer Vision (2008)

    Google Scholar 

  45. Guo, G.D., Mu, G.: Human age estimation: what is the influence across race and gender? In: IEEE International Workshop on Analysis and Modeling of Faces and Gestures (2010)

    Google Scholar 

  46. Guo, G.D., Mu, G.: Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 657–664 (2011)

    Google Scholar 

  47. Guo, G., Mu, G., Fu, Y.: Gender from Body: A Biologically-Inspired Approach with Manifold Learning. In: Zha, H., Taniguchi, R.-I., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5996, pp. 236–245. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  48. Guo, G.D., Mu, G., Fu, Y., Dyer, C., Huang, T.S.: A study on automatic age estimation on a large database. In: IEEE International Conference on Computer Vision, pp. 1986–1991 (2009)

    Google Scholar 

  49. Guo, G.D., Mu, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 112–119 (2009)

    Google Scholar 

  50. Guo, G.D., Mu, G., Ricanek, K.: Cross-age face recognition on a very large database: the performance versus age intervals and improvement using soft biometric traits. In: International Conference on Pattern Recognition (2010)

    Google Scholar 

  51. Hayashi, J., Yasumoto, M., Ito, H., Koshimizu, H.: A method for estimating and modeling age and gender using facial image processing. In: Seventh Int. Conf. on Virtual Systems and Multimedia, pp. 439–448 (2001)

    Google Scholar 

  52. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Tech. Rep., 7–49. University of Massachusetts, Amherst (2007)

    Google Scholar 

  53. Jain, A., Huang, J.: Integrating independent component analysis and linear discriminant analysis for gender classification. In: IEEE Int’l Conf. on Automatic Face and Gesture Recognition (2004)

    Google Scholar 

  54. Jain, A.K., Dass, S.C., Nandakumar, K.: Soft Biometric Traits for Personal Recognition Systems. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 731–738. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  55. Johnson, T.: Recent results: Biomarkers of aging. Experimental Gerontology 41, 1243–1246 (2006)

    Article  Google Scholar 

  56. Kanno, T., Akiba, M., Teramachi, Y., Nagahashi, H., Agui, T.: Classification of age group based on facial images of young males by using neural networks. IEICE Trans. on Information and Systems E84-D(8), 1094–1101 (2001)

    Google Scholar 

  57. Kwon, Y., Lobo, N.: Age classification from facial images. Computer Vision and Image Understanding 74(1), 1–21 (1999)

    Article  Google Scholar 

  58. Lanitis, A., Draganova, C., Christodoulou, C.: Comparing different classifiers for automatic age estimation. IEEE Trans. on SMC-B 24(4), 621–628 (2002)

    Google Scholar 

  59. Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Trans. on Pattern Anal. Mach. Intell. 34(1), 442–455 (2002)

    Article  Google Scholar 

  60. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  61. Luu, K., Ricanek, K., Bui, T., Suen, C.: Age estimation using active appearance models and support vector machine regression. In: IEEE Conf. on BTAS, pp. 1–5 (2009)

    Google Scholar 

  62. Makinen, E., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 541–547 (2008)

    Article  Google Scholar 

  63. Martin, A.: Bank transfer fraudsters have that grift of gab. The Japanese Times (2009), http://search.japantimes.co.jp/cgi-bin/nn20090203i1.html

  64. Moghaddam, B., Yang, M.H.: Learning gender with support faces. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 707–711 (2002)

    Article  Google Scholar 

  65. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts - towards memetic algorithms (1989)

    Google Scholar 

  66. Mutch, J., Lowe, D.: Object class recognition and localization using sparse features with limited receptive fields. In: IEEE Conf. on Comput. Vision and Pattern Recognit., pp. 11–18 (2006)

    Google Scholar 

  67. Ni, B., Song, Z., Yan, S.: Web image mining towards universal age estimator. In: ACM Multimedia (2009)

    Google Scholar 

  68. Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templates. In: IEEE Conf. on Comput. Vision and Pattern Recognit., pp. 193–199 (1997)

    Google Scholar 

  69. Park, U., Tong, Y., Jain, A.K.: Face recognition with temporal invariance: A 3d aging model. In: Intl. Conf. on Automatic Face and Gesture Recognition (2008)

    Google Scholar 

  70. Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The feret evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  71. Ramanathan, N., Chellappa, R.: Face verification across age progression. IEEE Trans. on Image Processing 15(11), 3349–3361 (2006)

    Article  Google Scholar 

  72. Ramanathan, N., Chellappa, R.: Modeling age progression in young faces. In: IEEE CVPR, pp. 387–394 (2006)

    Google Scholar 

  73. Ramanathan, N., Chellappa, R., Biswas, S.: Age progression in human faces: A survey. Visual Languages and Computing (2009)

    Google Scholar 

  74. Rhodes, M.G.: Age estimation of faces: A review. Applied Cognitive Psychology 23, 1–12 (2009)

    Article  Google Scholar 

  75. Ricanek, K., Tesafaye, T.: Morph: A longitudinal image database of normal adult age-progression. In: IEEE Conf. on AFGR, pp. 341–345 (2006)

    Google Scholar 

  76. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  77. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  78. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 411–426 (2007)

    Article  Google Scholar 

  79. Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: IEEE Conf. on Comput. Vision and Pattern Recognit. (2005)

    Google Scholar 

  80. Shakhnarovich, G., Viola, P., Moghaddam, B.: A unified learning framework for real time face detection and classification. In: Intl. Conf. on Automatic Face and Gesture Recognition (2002)

    Google Scholar 

  81. Shan, C.: Gender Classification on Real-Life Faces. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010, Part II. LNCS, vol. 6475, pp. 323–331. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  82. Shan, C.: Learning local features for age estimation on real-life faces. In: ACM Intl. Workshop on Multimodal Pervasive Video Analysis (2010)

    Google Scholar 

  83. Shan, C., Gong, S., McOwan, P.W.: Fusing gait and face cues for human gender recognition. Neurocomputing 71(10-12), 1931–1938 (2008)

    Article  Google Scholar 

  84. Stegmann, M., Ersboll, B., Larsen, R.: FAME - A flexible appearance modelling environment. IEEE Trans. Medical Imaging 22(10), 1319–1331 (2003)

    Article  Google Scholar 

  85. Sun, Z., Bebis, G., Yuan, X., Louis, S.: Genetic feature subset selection for gender classification: A comparison study. In: IEEE Workshop on Application of Computer Vision (2002)

    Google Scholar 

  86. Suo, J., Zhu, S., Shan, S., Chen, X.: A compositional and dynamic model for face aging. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 385–401 (2010)

    Article  Google Scholar 

  87. Tan, Q., Kruse, T., Christensen, K.: Design and analysis in genetic studies of human ageing and longevity. Ageing Research Reviews 5, 371–387 (2006)

    Article  Google Scholar 

  88. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  89. Toews, M., Arbel, T.: Detection, localization, and sex classification of faces from arbitrary viewpoints and under occlusion. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1567–1581 (2009)

    Article  Google Scholar 

  90. Ueki, K., Hayashida, T., Kobayashi, T.: Subspace-based age-group classification using facial images under various lighting conditions. In: IEEE Conf. on AFGR (2006)

    Google Scholar 

  91. Vapnik, V.N.: Statistical Learning Theory. John Wiley, New York (1998)

    MATH  Google Scholar 

  92. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple. In: Proc. IEEE CVPR (2001)

    Google Scholar 

  93. Wang, Y., Ricanek, K., Chen, C., Chang, Y.: Gender classification from infants to seniors. In: IEEE Conf. on BTAS, pp. 1–6 (2010)

    Google Scholar 

  94. Wild, H.A., Barrett, S.E., Spence, M.J., O’Toole, A.J., Cheng, Y.D., Brooke, J.: Recognition and sex categorization of adults’ and children’s faces: examining performance in the absence of sex-stereotyped cues. J. of Exp. Child Psychology 77, 269–291 (2000)

    Article  Google Scholar 

  95. Wu, B., Ai, H., Huang, C., Lao, S.: Lut-based adaboost for gender classification. In: Intl. Conf. on Audio and Video-Based Person Authentication (2003)

    Google Scholar 

  96. Wu, T.X., Lu, B.L.: Multi-View Gender Classification Using Hierarchical Classifiers Structure. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010. LNCS, vol. 6444, pp. 625–632. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  97. Xiao, B., Yang, X., Xu, Y.: Learning distance metric for regression by semidefinite programming with application to human age estimation. In: ACM Multimedia (2009)

    Google Scholar 

  98. Xu, X., Huang, T.S.: SODA-Boosting and Its Application to Gender Recognition. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 193–204. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  99. Xu, Z., Chen, H., Zhu, S., Luo, J.: A hierarchical compositional model for face representation and sketching. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 955–969 (2008)

    Article  Google Scholar 

  100. Yamaguchi, M.K., Hirukawa, T., Kanazawa, S.: Judgment of sex through facial parts. Perception 24, 563–575 (1995)

    Article  Google Scholar 

  101. Yan, S., Liu, M., Huang, T.: Extracting age information from local spatially flexible patches. In: IEEE Conf. on ICASSP, pp. 737–740 (2008)

    Google Scholar 

  102. Yan, S., Wang, H., Huang, T.S., Tang, X.: Ranking with uncertain labels. In: IEEE Conf. on Multimedia and Expo., pp. 96–99 (2007)

    Google Scholar 

  103. Yan, S., Wang, H., Tang, X., Huang, T.: Learning auto-structured regressor from uncertain nonnegative labels. In: IEEE Conf. on ICCV (2007)

    Google Scholar 

  104. Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29, 40–51 (2007)

    Article  Google Scholar 

  105. Yan, S., Zhou, X., Liu, M., Hasegawa-Johnson, M., Huang, T.: Regression from patch-kernel. In: IEEE Conf. on CVPR (2008)

    Google Scholar 

  106. Yang, Z., Ai, H.: Demographic classification with local binary patterns. In: Intl. Conf. on Biometrics, pp. 464–473 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Guo, G. (2012). Human Age Estimation and Sex Classification. In: Shan, C., Porikli, F., Xiang, T., Gong, S. (eds) Video Analytics for Business Intelligence. Studies in Computational Intelligence, vol 409. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28598-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28598-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28597-4

  • Online ISBN: 978-3-642-28598-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics