Abstract
Collecting demographic information from the customers, such as age and sex, is very important for marketing and customer group analysis. For instance, the marketing study has an interest to know how many people visited a shopping mall, and what is the distribution of the customers, such as how many males and females; how many young, adult, and senior people. Instead of hiring human workers to observe the customers, a computational system might be developed to analyze people who appeared in images and videos captured by cameras installed in a shopping mall, and then gather the demographic information. To develop a real system for age estimation and sex classification, many essential issues have to be addressed. In this chapter, a detailed introduction of the computational approaches to human age estimation and sex classification will be given. Various methods for feature extraction and learning will be described. Major challenges and future research directions will also be discussed. The goal is to inspire new research and encourage deeper investigation towards developing a working system for business intelligence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Face Recognition Homepage, http://face-rec.org/
Intellio visiscanner retail customer analytics solution, http://www.intellio.eu/visiscanner.php
NEC develops an ultra-compact sensor that estimates age and gender, http://tweetbuzz.jp/entry/56752845/www.nec.co.jp/press/en/1105/3101.html
Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)
Baluja, S., Rowley, H.A.: Boosting sex identification performance. Intl. J. of Comput. Vision 71(1), 111–119 (2007)
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press (1996)
Bruce, V., Burton, A., Hanna, E., Healey, P., Mason, O.: Sex discrimination: How do we tell the difference between male and female faces? Perception 22, 131–152 (1993)
Brunelli, R., Poggio, T.: Hyperbf networks for gender classification. In: Proc. DARPA Image Understanding Workshop, pp. 311–314 (1992)
Cai, D., He, X., Han, J., Zhang, H.: Orthogonal laplacianfaces for face recognition. IEEE Trans. on Image Processing 15, 3608–3614 (2006)
Cai, D., He, X., Zhou, K., Han, J., Bao, H.: Locality sensitive discriminant analysis. In: Proc. Int. Joint Conf. on Artificial Intell. (2007)
Cao, L., Dikmen, M., Fu, Y., Huang, T.: Gender recognition from body. In: ACM Multimedia (2008)
Chang, Y., Wang, Y., Ricanek, K., Chen, C.: Feature selection for improved automatic gender classification. In: IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 29–35 (2011)
Chellappa, R., Sinha, P., Phillips, P.: Face recognition by computers and humans. IEEE Computer 43(2), 46–55 (2010)
Chellappa, R., Turaga, P.: Recent advances in age and height estimation from still images and video. In: IEEE Conf. on AFGR (2011)
Chen, C., Chang, Y., Ricanek, K., Wang, Y.: Face age estimation using model selection. In: IEEE CVPR Workshop, pp. 93–99 (2010)
Christensen, K., Doblhammer, G., Rau, R., Vaupel, J.: Ageing populations: the challenges ahead. Lancet 374, 1196–1208 (2009)
Christensen, K., Johnson, T., Vaupel, J.: The quest for genetic determinants of human longevity: challenges and insights. Nature Reviews Genetics 7, 436–448 (2006)
Christensen, K., Thinggaard, M., McGue, M., Rexbye, H., Hjelmborg, J., Aviv, A., Gunn, D., Ouderaa, F., Vaupel, J.: Perceived age as clinically useful biomarker of ageing: Cohort study. British Medical Journal 339, b5262 (2009)
Comon, P.: Independent component analysis: A new concept? Signal Processing 36(3), 287–314 (1994)
Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)
Costen, N., Brown, M., Akamastu, S.: Sparse models for gender classification. In: IEEE Int’l. Conf. on Automatic Face and Gesture Recognition (2004)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conf. on Comput. Vision and Pattern Recognit., pp. 886–893 (2005)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. of the Royal Statistical Society, Series B 39(1), 1–38 (1977)
Farkas, L.: Anthropometry of the Head and Face. Raven Press, New York (1994)
FGNET: The fg-net aging database (2002), http://www.fgnet.rsunit.com/
Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Proc. the Thirteen International Conference on Machine Learning, pp. 148–156 (1996)
Fu, Y., Guo, G.D., Huang, T.S.: Soft biometrics for video surveillance. In: Ma, Y., Qian, G. (eds.) Intelligent Video Surveillance: Systems and Technology. Taylor and Francis Group, LLC (2009)
Fu, Y., Guo, G.D., Huang, T.S.: Age synthesis and estimation via faces: A survey. IEEE Trans. Pattern Analysis and Machine Intelligence 32(11), 1955–1976 (2010)
Fu, Y., Huang, T.S.: Human age estimation with regression on discriminative aging manifold. IEEE Trans. on Multimedia 10(4), 578–584 (2008)
Fu, Y., Xu, Y., Huang, T.S.: Estimating human ages by manifold analysis of face pictures and regression on aging features. In: IEEE Conf. on Multimedia and Expo., pp. 1383–1386 (2007)
Fukai, H., Takimoto, H., Mitsukura, Y., Fukumi, M.: Apparent age estimation system based on age perception. In: SICE Annual Conference, pp. 2808–2812 (2007)
Gallagher, A., Chen, T.: Understanding images of groups of people. In: CVPR, pp. 256–263 (2009)
Gao, F., Ai, H.: Face age classification on consumer images with gabor feature and fuzzy lda method. In: The 3rd IAPR Intl. Conf. on Biometrics (2009)
Gao, W., Ai, H.: Face gender classification on consumer images in a multiethnic environment. In: Intl. Conf. on Biometrics (2009)
Geng, X., Zhou, Z.H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. IEEE Trans. on PAMI 29(12), 2234–2240 (2007)
Geng, X., Zhou, Z.H., Zhang, Y., Li, G., Dai, H.: Learning from facial aging patterns for automatic age estimation. In: ACM Conf. on Multimedia, pp. 307–316 (2006)
Golomb, B., Lawrence, D., Sejnowski, T.: Sexnet: A neural network identifies sex from human faces. In: Advances in Neural Information Processing Systems, vol. 3, pp. 572–577 (1991)
Graf, A., Wichmann, F.: Gender classification of human faces. In: Int’l Workshop on Biologically Motivated Computer Vision, pp. 491–500 (2002)
Gunay, A., Nabiyev, V.V.: Automatic detection of anthropometric features from facial images. In: IEEE Conf. on Signal Processing and Communications Applications (2007)
Gunay, A., Nabiyev, V.V.: Automatic age classification with LBP. In: Proc. Int’l Symp. Computer and Information Science (2008)
Guo, G.D., Dyer, C., Fu, Y., Huang, T.S.: Is gender recognition affected by age? In: IEEE International Workshop on Human-Computer Interaction, pp. 2032–2039 (2009)
Guo, G.D., Fu, Y., Dyer, C., Huang, T.S.: Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. Image Processing 17(7), 1178–1188 (2008)
Guo, G.D., Fu, Y., Dyer, C., Huang, T.S.: A probabilistic fusion approach to human age prediction. In: International Workshop on Semantic Learning Applications in Multimedia (2008)
Guo, G.D., Fu, Y., Huang, T., Dyer, C.: Locally adjusted robust regression for human age estimation. In: IEEE Workshop on Application of Computer Vision (2008)
Guo, G.D., Mu, G.: Human age estimation: what is the influence across race and gender? In: IEEE International Workshop on Analysis and Modeling of Faces and Gestures (2010)
Guo, G.D., Mu, G.: Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 657–664 (2011)
Guo, G., Mu, G., Fu, Y.: Gender from Body: A Biologically-Inspired Approach with Manifold Learning. In: Zha, H., Taniguchi, R.-I., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5996, pp. 236–245. Springer, Heidelberg (2010)
Guo, G.D., Mu, G., Fu, Y., Dyer, C., Huang, T.S.: A study on automatic age estimation on a large database. In: IEEE International Conference on Computer Vision, pp. 1986–1991 (2009)
Guo, G.D., Mu, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 112–119 (2009)
Guo, G.D., Mu, G., Ricanek, K.: Cross-age face recognition on a very large database: the performance versus age intervals and improvement using soft biometric traits. In: International Conference on Pattern Recognition (2010)
Hayashi, J., Yasumoto, M., Ito, H., Koshimizu, H.: A method for estimating and modeling age and gender using facial image processing. In: Seventh Int. Conf. on Virtual Systems and Multimedia, pp. 439–448 (2001)
Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Tech. Rep., 7–49. University of Massachusetts, Amherst (2007)
Jain, A., Huang, J.: Integrating independent component analysis and linear discriminant analysis for gender classification. In: IEEE Int’l Conf. on Automatic Face and Gesture Recognition (2004)
Jain, A.K., Dass, S.C., Nandakumar, K.: Soft Biometric Traits for Personal Recognition Systems. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 731–738. Springer, Heidelberg (2004)
Johnson, T.: Recent results: Biomarkers of aging. Experimental Gerontology 41, 1243–1246 (2006)
Kanno, T., Akiba, M., Teramachi, Y., Nagahashi, H., Agui, T.: Classification of age group based on facial images of young males by using neural networks. IEICE Trans. on Information and Systems E84-D(8), 1094–1101 (2001)
Kwon, Y., Lobo, N.: Age classification from facial images. Computer Vision and Image Understanding 74(1), 1–21 (1999)
Lanitis, A., Draganova, C., Christodoulou, C.: Comparing different classifiers for automatic age estimation. IEEE Trans. on SMC-B 24(4), 621–628 (2002)
Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Trans. on Pattern Anal. Mach. Intell. 34(1), 442–455 (2002)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)
Luu, K., Ricanek, K., Bui, T., Suen, C.: Age estimation using active appearance models and support vector machine regression. In: IEEE Conf. on BTAS, pp. 1–5 (2009)
Makinen, E., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 541–547 (2008)
Martin, A.: Bank transfer fraudsters have that grift of gab. The Japanese Times (2009), http://search.japantimes.co.jp/cgi-bin/nn20090203i1.html
Moghaddam, B., Yang, M.H.: Learning gender with support faces. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 707–711 (2002)
Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts - towards memetic algorithms (1989)
Mutch, J., Lowe, D.: Object class recognition and localization using sparse features with limited receptive fields. In: IEEE Conf. on Comput. Vision and Pattern Recognit., pp. 11–18 (2006)
Ni, B., Song, Z., Yan, S.: Web image mining towards universal age estimator. In: ACM Multimedia (2009)
Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templates. In: IEEE Conf. on Comput. Vision and Pattern Recognit., pp. 193–199 (1997)
Park, U., Tong, Y., Jain, A.K.: Face recognition with temporal invariance: A 3d aging model. In: Intl. Conf. on Automatic Face and Gesture Recognition (2008)
Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The feret evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)
Ramanathan, N., Chellappa, R.: Face verification across age progression. IEEE Trans. on Image Processing 15(11), 3349–3361 (2006)
Ramanathan, N., Chellappa, R.: Modeling age progression in young faces. In: IEEE CVPR, pp. 387–394 (2006)
Ramanathan, N., Chellappa, R., Biswas, S.: Age progression in human faces: A survey. Visual Languages and Computing (2009)
Rhodes, M.G.: Age estimation of faces: A review. Applied Cognitive Psychology 23, 1–12 (2009)
Ricanek, K., Tesafaye, T.: Morph: A longitudinal image database of normal adult age-progression. In: IEEE Conf. on AFGR, pp. 341–345 (2006)
Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 2(11), 1019–1025 (1999)
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)
Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 411–426 (2007)
Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: IEEE Conf. on Comput. Vision and Pattern Recognit. (2005)
Shakhnarovich, G., Viola, P., Moghaddam, B.: A unified learning framework for real time face detection and classification. In: Intl. Conf. on Automatic Face and Gesture Recognition (2002)
Shan, C.: Gender Classification on Real-Life Faces. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010, Part II. LNCS, vol. 6475, pp. 323–331. Springer, Heidelberg (2010)
Shan, C.: Learning local features for age estimation on real-life faces. In: ACM Intl. Workshop on Multimodal Pervasive Video Analysis (2010)
Shan, C., Gong, S., McOwan, P.W.: Fusing gait and face cues for human gender recognition. Neurocomputing 71(10-12), 1931–1938 (2008)
Stegmann, M., Ersboll, B., Larsen, R.: FAME - A flexible appearance modelling environment. IEEE Trans. Medical Imaging 22(10), 1319–1331 (2003)
Sun, Z., Bebis, G., Yuan, X., Louis, S.: Genetic feature subset selection for gender classification: A comparison study. In: IEEE Workshop on Application of Computer Vision (2002)
Suo, J., Zhu, S., Shan, S., Chen, X.: A compositional and dynamic model for face aging. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 385–401 (2010)
Tan, Q., Kruse, T., Christensen, K.: Design and analysis in genetic studies of human ageing and longevity. Ageing Research Reviews 5, 371–387 (2006)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)
Toews, M., Arbel, T.: Detection, localization, and sex classification of faces from arbitrary viewpoints and under occlusion. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1567–1581 (2009)
Ueki, K., Hayashida, T., Kobayashi, T.: Subspace-based age-group classification using facial images under various lighting conditions. In: IEEE Conf. on AFGR (2006)
Vapnik, V.N.: Statistical Learning Theory. John Wiley, New York (1998)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple. In: Proc. IEEE CVPR (2001)
Wang, Y., Ricanek, K., Chen, C., Chang, Y.: Gender classification from infants to seniors. In: IEEE Conf. on BTAS, pp. 1–6 (2010)
Wild, H.A., Barrett, S.E., Spence, M.J., O’Toole, A.J., Cheng, Y.D., Brooke, J.: Recognition and sex categorization of adults’ and children’s faces: examining performance in the absence of sex-stereotyped cues. J. of Exp. Child Psychology 77, 269–291 (2000)
Wu, B., Ai, H., Huang, C., Lao, S.: Lut-based adaboost for gender classification. In: Intl. Conf. on Audio and Video-Based Person Authentication (2003)
Wu, T.X., Lu, B.L.: Multi-View Gender Classification Using Hierarchical Classifiers Structure. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010. LNCS, vol. 6444, pp. 625–632. Springer, Heidelberg (2010)
Xiao, B., Yang, X., Xu, Y.: Learning distance metric for regression by semidefinite programming with application to human age estimation. In: ACM Multimedia (2009)
Xu, X., Huang, T.S.: SODA-Boosting and Its Application to Gender Recognition. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 193–204. Springer, Heidelberg (2007)
Xu, Z., Chen, H., Zhu, S., Luo, J.: A hierarchical compositional model for face representation and sketching. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 955–969 (2008)
Yamaguchi, M.K., Hirukawa, T., Kanazawa, S.: Judgment of sex through facial parts. Perception 24, 563–575 (1995)
Yan, S., Liu, M., Huang, T.: Extracting age information from local spatially flexible patches. In: IEEE Conf. on ICASSP, pp. 737–740 (2008)
Yan, S., Wang, H., Huang, T.S., Tang, X.: Ranking with uncertain labels. In: IEEE Conf. on Multimedia and Expo., pp. 96–99 (2007)
Yan, S., Wang, H., Tang, X., Huang, T.: Learning auto-structured regressor from uncertain nonnegative labels. In: IEEE Conf. on ICCV (2007)
Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29, 40–51 (2007)
Yan, S., Zhou, X., Liu, M., Hasegawa-Johnson, M., Huang, T.: Regression from patch-kernel. In: IEEE Conf. on CVPR (2008)
Yang, Z., Ai, H.: Demographic classification with local binary patterns. In: Intl. Conf. on Biometrics, pp. 464–473 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Guo, G. (2012). Human Age Estimation and Sex Classification. In: Shan, C., Porikli, F., Xiang, T., Gong, S. (eds) Video Analytics for Business Intelligence. Studies in Computational Intelligence, vol 409. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28598-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-28598-1_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28597-4
Online ISBN: 978-3-642-28598-1
eBook Packages: EngineeringEngineering (R0)