Abstract
Recognizing Textual Entailment (RTE) is a fundamental task in Natural Language Understanding. The task is to decide whether the meaning of a text can be inferred from the meaning of the other one. In this paper, we conduct an empirical study of the RTE task for Japanese, adopting a machine-learning-based approach. We quantitatively analyze the effects of various entailment features and the impact of RTE resources on the performance of a RTE system. This paper also investigates the use of Machine Translation for the RTE task and determines whether Machine Translation can be used to improve the performance of our RTE system. Experimental results achieved on benchmark data sets show that our machine-learning-based RTE system outperforms the baseline method based on lexical matching. The results also suggest that the Machine Translation component can be utilized to improve the performance of the RTE system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bentivogli, L., Dagan, I., Dang, H.T., Giampiccolo, D., Magnini, B.: The fifth pascal recognizing textual entailment challenge. In: Proceedings of TAC Workshop (2009)
Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
Dagan, I., Glickman, O., Magnini, B.: The Pascal Recognising Textual Entailment Challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 177–190. Springer, Heidelberg (2006)
Dagan, I., Roth, D., Massimo, F.: A tutorial on textual entailment (2007), http://l2r.cs.uiuc.edu/~danr/Talks/DRZ-TE-Tutorial-ACL07.ppt
Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)
Glickman, O., Dagan, I., Koppel, M.: Web based probabilistic textual entailment. In: Proceedings of the 1st RTE Workshop, Southampton, UK (2005)
Harabagiu, S., Hickl, A.: Methods for using textual entailment in open-domain question answering. In: Proceedings of ACL, pp. 905–912 (2006)
Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J. ACM 24, 664–675 (1977)
Ikehara, S., Miyazaki, M., Sirai, S., Yokoo, A., Nakaiwa, H., Ogura, K., Ooyama, Y., Hayashi, Y.: Nihon-go goi taikei, Iwanami, Japan (1997) (in Japanese)
Kudo, T., Matsumoto, Y.: Japanese dependency analysis using cascaded chunking. In: CoNLL 2002: Proceedings of the 6th Conference on Natural Language Learning 2002 (COLING 2002 Post-Conference Workshops), pp. 63–69 (2002)
MacCartney, B.: Natural Language Inference. Ph.D. thesis, Stanford University (2009)
Malakasiotis, P., Androutsopoulos, I.: Learning textual entailment using svms and string similarity measures. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 42–47 (2007)
Mehdad, Y., Negri, M., Federico, M.: Towards cross-lingual textual entailment. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 321–324 (June 2010)
Mehdad, Y., Negri, M., Federico, M.: Using bilingual parallel corpora for cross-lingual textual entailment. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 1336–1345 (June 2011)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318 (2002)
Romano, L., Kouylekov, M., Szpektor, I., Dagan, I., Lavelli, A.: Investigating a generic paraphrase-based approach for relation extraction. In: Proceedings of EACL, pp. 401–408 (2006)
Shima, H., Kanayama, H., Lee, C.W., Lin, C.J., Mitamura, T., Miyao, Y., Shi, S., Takeda, K.: Overview of ntcir9 rite: Recognizing inference in text. In: NTCIR9 Proceedings (2011)
Takamura, H., Inui, T., Okumura, M.: Extracting semantic orientations of words using spin model. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005), pp. 133–140. Association for Computational Linguistics, Ann Arbor (2005), http://www.aclweb.org/anthology/P05-1017
Vapnik, V.N.: Statistical learning theory. John Wiley (1998)
Wan, S., Dras, M., Dale, R., Paris, C.: Using dependency-based features to take the “para-farce” out of paraphrase. In: Proceedings of ALTW (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pham, Q.N.M., Nguyen, L.M., Shimazu, A. (2012). An Empirical Study of Recognizing Textual Entailment in Japanese Text. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2012. Lecture Notes in Computer Science, vol 7181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28604-9_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-28604-9_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28603-2
Online ISBN: 978-3-642-28604-9
eBook Packages: Computer ScienceComputer Science (R0)