Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Empirical Study of Recognizing Textual Entailment in Japanese Text

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7181))

  • 2046 Accesses

Abstract

Recognizing Textual Entailment (RTE) is a fundamental task in Natural Language Understanding. The task is to decide whether the meaning of a text can be inferred from the meaning of the other one. In this paper, we conduct an empirical study of the RTE task for Japanese, adopting a machine-learning-based approach. We quantitatively analyze the effects of various entailment features and the impact of RTE resources on the performance of a RTE system. This paper also investigates the use of Machine Translation for the RTE task and determines whether Machine Translation can be used to improve the performance of our RTE system. Experimental results achieved on benchmark data sets show that our machine-learning-based RTE system outperforms the baseline method based on lexical matching. The results also suggest that the Machine Translation component can be utilized to improve the performance of the RTE system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bentivogli, L., Dagan, I., Dang, H.T., Giampiccolo, D., Magnini, B.: The fifth pascal recognizing textual entailment challenge. In: Proceedings of TAC Workshop (2009)

    Google Scholar 

  2. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  3. Dagan, I., Glickman, O., Magnini, B.: The Pascal Recognising Textual Entailment Challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 177–190. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Dagan, I., Roth, D., Massimo, F.: A tutorial on textual entailment (2007), http://l2r.cs.uiuc.edu/~danr/Talks/DRZ-TE-Tutorial-ACL07.ppt

  5. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)

    Google Scholar 

  6. Glickman, O., Dagan, I., Koppel, M.: Web based probabilistic textual entailment. In: Proceedings of the 1st RTE Workshop, Southampton, UK (2005)

    Google Scholar 

  7. Harabagiu, S., Hickl, A.: Methods for using textual entailment in open-domain question answering. In: Proceedings of ACL, pp. 905–912 (2006)

    Google Scholar 

  8. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J. ACM 24, 664–675 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ikehara, S., Miyazaki, M., Sirai, S., Yokoo, A., Nakaiwa, H., Ogura, K., Ooyama, Y., Hayashi, Y.: Nihon-go goi taikei, Iwanami, Japan (1997) (in Japanese)

    Google Scholar 

  10. Kudo, T., Matsumoto, Y.: Japanese dependency analysis using cascaded chunking. In: CoNLL 2002: Proceedings of the 6th Conference on Natural Language Learning 2002 (COLING 2002 Post-Conference Workshops), pp. 63–69 (2002)

    Google Scholar 

  11. MacCartney, B.: Natural Language Inference. Ph.D. thesis, Stanford University (2009)

    Google Scholar 

  12. Malakasiotis, P., Androutsopoulos, I.: Learning textual entailment using svms and string similarity measures. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 42–47 (2007)

    Google Scholar 

  13. Mehdad, Y., Negri, M., Federico, M.: Towards cross-lingual textual entailment. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 321–324 (June 2010)

    Google Scholar 

  14. Mehdad, Y., Negri, M., Federico, M.: Using bilingual parallel corpora for cross-lingual textual entailment. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 1336–1345 (June 2011)

    Google Scholar 

  15. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318 (2002)

    Google Scholar 

  16. Romano, L., Kouylekov, M., Szpektor, I., Dagan, I., Lavelli, A.: Investigating a generic paraphrase-based approach for relation extraction. In: Proceedings of EACL, pp. 401–408 (2006)

    Google Scholar 

  17. Shima, H., Kanayama, H., Lee, C.W., Lin, C.J., Mitamura, T., Miyao, Y., Shi, S., Takeda, K.: Overview of ntcir9 rite: Recognizing inference in text. In: NTCIR9 Proceedings (2011)

    Google Scholar 

  18. Takamura, H., Inui, T., Okumura, M.: Extracting semantic orientations of words using spin model. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005), pp. 133–140. Association for Computational Linguistics, Ann Arbor (2005), http://www.aclweb.org/anthology/P05-1017

    Chapter  Google Scholar 

  19. Vapnik, V.N.: Statistical learning theory. John Wiley (1998)

    Google Scholar 

  20. Wan, S., Dras, M., Dale, R., Paris, C.: Using dependency-based features to take the “para-farce” out of paraphrase. In: Proceedings of ALTW (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pham, Q.N.M., Nguyen, L.M., Shimazu, A. (2012). An Empirical Study of Recognizing Textual Entailment in Japanese Text. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2012. Lecture Notes in Computer Science, vol 7181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28604-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28604-9_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28603-2

  • Online ISBN: 978-3-642-28604-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics