Abstract
The availability of inertial sensors embedded in mobile devices has enabled a new type of interaction based on the movements or “gestures” made by the users when holding the device. In this paper we propose a gesture recognition system for mobile devices based on accelerometer and gyroscope measurements. The system is capable of recognizing a set of predefined gestures in a user-independent way, without the need of a training phase. Furthermore, it was designed to be executed in real-time in resource-constrained devices, and therefore has a low computational complexity. The performance of the system is evaluated offline using a dataset of gestures, and also online, through some user tests with the system running in a smart phone.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pylvänäinen, T.: Accelerometer Based Gesture Recognition Using Continuous HMMs. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 639–646. Springer, Heidelberg (2005)
Niezen, G., Hancke, G.P.: Gesture recognition as ubiquitous input for mobile phones. In: Proc. of the Workshop on Devices that Alter Perception (2008)
Joselli, M., Clua, E.: gRmobile: A Framework for Touch and Accelerometer Gesture Recognition for Mobile Games. In: 2009 VIII Brazilian Symposium on Games and Digital Entertainment, pp. 141–150. IEEE (2009)
Niezen, G., Hancke, G.P.: Evaluating and optimising accelerometer-based gesture recognition techniques for mobile devices. In: AFRICON 2009, pp. 1–6. IEEE (2009)
Westeyn, T., Brashear, H., Atrash, A., Starner, T.: Georgia Tech gesture toolkit: supporting experiments in gesture recognition. In: Proc. of the 5th Int. Conf. on Multimodal Interfaces, pp. 85–92. ACM (2003)
Kauppila, M., Pirttikangas, S., Su, X., Riekki, J.: Accelerometer Based Gestural Control of Browser Application. In: Int. Workshop on Real Field Identification, pp. 2–17 (2007)
Liu, J., Wang, Z., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uWave: Accelerometer-based personalized gesture recognition and its applications. Pervasive and Mobile Computing 5(6), 657–675 (2009)
Wu, J., Pan, G., Zhang, D., Qi, G., Li, S.: Gesture Recognition with a 3-D Accelerometer. In: Zhang, D., Portmann, M., Tan, A.-H., Indulska, J. (eds.) UIC 2009. LNCS, vol. 5585, pp. 25–38. Springer, Heidelberg (2009)
Cho, S.J., Oh, J.K., Bang, W.C., Chang, W., Choi, E., Jing, Y., Cho, J., Kim, D.Y.: Magic wand: a hand-drawn gesture input device in 3-D space with inertial sensors. In: 9th Int. Workshop on Frontiers in Handwriting Recognition, pp. 106–111. IEEE (2004)
Kauppila, M., Inkeroinen, T., Pirttikangas, S., Riekki, J.: Mobile phone controller based on accelerative gesturing. Adjunct Proceedings Pervasive, 130–133 (2008)
Hofmann, F.G., Heyer, P., Hommel, G.: Velocity Profile Based Recognition of Dynamic Gestures with Discrete Hidden Markov Models. In: Wachsmuth, I., Fröhlich, M. (eds.) GW 1997. LNCS (LNAI), vol. 1371, pp. 81–95. Springer, Heidelberg (1998)
Schlömer, T., Poppinga, B., Henze, N., Boll, S.: Gesture recognition with a Wii controller. In: Proc. of the 2nd Int. Conf. on Tangible and Embedded Interaction, pp. 11–14. ACM (2008)
Mäntyjärvi, J., Kela, J., Korpipää, P., Kallio, S.: Enabling fast and effortless customisation in accelerometer based gesture interaction. In: Proc. of the 3rd Int. Conf. on Mobile and Ubiquitous Multimedia, pp. 25–31. ACM (2004)
Kela, J., Korpipää, P., Mäntyjärvi, J., Kallio, S., Savino, G., Jozzo, L., Di Marca, S.: Accelerometer-based gesture control for a design environment. Personal and Ubiquitous Computing 10(5), 285–299 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, X., Tarrío, P., Metola, E., Bernardos, A.M., Casar, J.R. (2012). Gesture Recognition Using Mobile Phone’s Inertial Sensors. In: Omatu, S., De Paz Santana, J., González, S., Molina, J., Bernardos, A., Rodríguez, J. (eds) Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28765-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-28765-7_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28764-0
Online ISBN: 978-3-642-28765-7
eBook Packages: EngineeringEngineering (R0)