Introduction
One of the key applications of statistical analysis and data mining is the development of the classification and prediction models. In both cases, significant improvements can be attained by limiting the number of model inputs. This can be done at two levels, namely by eliminating unnecessary attributes [3] and reducing the dimensionality of the data [12].Variety of methods have been proposed in both fields.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transaction of Information Theory 13, 21–27 (1967)
Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, School of Information and Computer Scienc, Irvine, CA (2010), http://archive.ics.uci.edu/ml
de Haro-GarcÃa, A., Pérez-RodrÃguez, J., GarcÃa-Pedrajas, N.: Feature Selection for Translation Initiation Site Recognition. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.) IEA/AIE 2011, Part II. LNCS, vol. 6704, pp. 357–366. Springer, Heidelberg (2011)
Grzenda, M.: Prediction-Oriented Dimensionality Reduction of Industrial Data Sets. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.) IEA/AIE 2011, Part I. LNCS, vol. 6703, pp. 232–241. Springer, Heidelberg (2011)
Haykin, S.: Neural Networks and Learning Machines. Person Education (2009)
Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall Inc. (1999)
Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)
Ishibuchi, H., Nakashima, T., Nii, M.: Learning of Neural Networks with GA-based Instance Selection. In: Proc. of 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada, July 25-28, pp. 2102–2107 (2001)
Larose, D.T.: Data Mining Methods and Models. John Wiley & Sons (2006)
Lattin, J.M., Carroll, J.D., Green, P.E.: Analyzing Multivariate Data. Thomson (2003)
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
Lee, J., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer (2010)
Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)
Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K.: Dimensionality reduction using genetic algorithms. IEEE Transactions on Evolutionary Computation 4(2), 164–171 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lacka, H., Grzenda, M. (2012). On the Evolutionary Search for Data Reduction Method. In: Omatu, S., De Paz Santana, J., González, S., Molina, J., Bernardos, A., RodrÃguez, J. (eds) Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28765-7_63
Download citation
DOI: https://doi.org/10.1007/978-3-642-28765-7_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28764-0
Online ISBN: 978-3-642-28765-7
eBook Packages: EngineeringEngineering (R0)