Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Evolutionary Search for Data Reduction Method

  • Conference paper
Distributed Computing and Artificial Intelligence

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 151))

Introduction

One of the key applications of statistical analysis and data mining is the development of the classification and prediction models. In both cases, significant improvements can be attained by limiting the number of model inputs. This can be done at two levels, namely by eliminating unnecessary attributes [3] and reducing the dimensionality of the data [12].Variety of methods have been proposed in both fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transaction of Information Theory 13, 21–27 (1967)

    Article  MATH  Google Scholar 

  2. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, School of Information and Computer Scienc, Irvine, CA (2010), http://archive.ics.uci.edu/ml

    Google Scholar 

  3. de Haro-García, A., Pérez-Rodríguez, J., García-Pedrajas, N.: Feature Selection for Translation Initiation Site Recognition. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.) IEA/AIE 2011, Part II. LNCS, vol. 6704, pp. 357–366. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Grzenda, M.: Prediction-Oriented Dimensionality Reduction of Industrial Data Sets. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.) IEA/AIE 2011, Part I. LNCS, vol. 6703, pp. 232–241. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Haykin, S.: Neural Networks and Learning Machines. Person Education (2009)

    Google Scholar 

  6. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall Inc. (1999)

    Google Scholar 

  7. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  8. Ishibuchi, H., Nakashima, T., Nii, M.: Learning of Neural Networks with GA-based Instance Selection. In: Proc. of 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada, July 25-28, pp. 2102–2107 (2001)

    Google Scholar 

  9. Larose, D.T.: Data Mining Methods and Models. John Wiley & Sons (2006)

    Google Scholar 

  10. Lattin, J.M., Carroll, J.D., Green, P.E.: Analyzing Multivariate Data. Thomson (2003)

    Google Scholar 

  11. http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html

  12. Lee, J., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer (2010)

    Google Scholar 

  13. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)

    Article  MATH  Google Scholar 

  14. Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K.: Dimensionality reduction using genetic algorithms. IEEE Transactions on Evolutionary Computation 4(2), 164–171 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Lacka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lacka, H., Grzenda, M. (2012). On the Evolutionary Search for Data Reduction Method. In: Omatu, S., De Paz Santana, J., González, S., Molina, J., Bernardos, A., Rodríguez, J. (eds) Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28765-7_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28765-7_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28764-0

  • Online ISBN: 978-3-642-28765-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics