Abstract
In this paper we propose an outlier detection method for geostatistical functional data. Our approach generalizes the functional proposal of Febrero et al. (Comput 5 Stat 22(3):411–427, 2007; Environmetrics 19(4):331–345, 2008) in the spatial framework. It is based on the concept of the kernelized functional modal depth that we have opportunely defined extending the functional modal depth. As an illustration, the methodology is applied to sensor data corresponding to long-term daily climatic time series from meteorological stations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baladandayuthapani, V., Mallick, B., Hong, M., Lupton, J., Turner, N., & Caroll, R. (2008). Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinoginesis. Biometrics, 64, 64–73.
Cressie, N. (1993). Statistics for spatial data. New York: Wiley.
Cuevas, A., Febrero, M., & Fraiman, R. (2006). On the use of bootstrap for estimating functions with functional data. Computational Statistics and Data Analysis, 51, 1063–1074.
Cuevas, A., Febrero, M., & Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics, 22, 481–496. doi:10.1007/s00180-007-0053-0.
Delicado, P., Giraldo, R., Comas, C., & Mateu, J. (2010). Statistics for spatial functional data: Some recent contributions. Environmetrics, 21, 224–239.
Febrero, M., Galeano, P., & Gonzalez-Manteiga, W. (2007). Functional analysis of NOx levels: Location and scale estimation and outlier detection. Computational Statistics, 22(3), 411–427.
Febrero, M., Galeano, P., & Gonzalez-Manteiga, W. (2008). Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels. Environmetrics, 19(4), 331–345.
Giraldo, R., Delicado, P., & Mateu, J. (2010). Continuous time-varying kriging for spatial prediction of functional data: an environmental application. Journal of Agricultural, Biological, and Environmental Statistics (JABES), 15, 66–82.
Giraldo, R., Delicado, P., & Mateu, J. (2011). Ordinary kriging for function-valued spatial data. Environmental and Ecological Statistics, 18, 411–426. doi:10.1007/s10651-010-0143-y
Giraldo, R., Delicado, P., & Mateu, J. (2012). Hierarchical clustering of spatially correlated functional data. Statistica Neerlandica. doi:10.1111/j.1467-9574.2012.00522.x
Giraldo, R., & Mateu, J. (2012). Kriging for functional data. In Encyclopedia of Environmetrics, (2nd ed.). Forthcoming
Hawkins, D. M. (1980). Identification of outliers. London: Chapman and Hall.
Hyndman, R. J., & Shang, H. L. (2010). Rainbow plots, bagplots, and boxplots for functional data. Journal of Computational and Graphical Statistics, 19, 29–45.
Nerini, D., & Monestiez, P. (2008). A cokriging method for spatial functional data With applications in oceanology. Long summary sent to “The First International Workshop on Functional and Operational Statistics”, Toulouse.
Nerini, D., Monestiez, P., & Manté, C. (2010). A cokriging method for spatial functional. Journal of Multivariate Analysis, 101, 409–418.
Ramsay, J. E., & Silverman, B. W. (2005). Functional data analysis (2nd ed.). Springer: New York.
Romano, E., Balzanella, A., & Verde, R. (2010). A regionalization method for spatial functional data based on variogram models: An application on environmental data. In Proceedings of the 45th Scientific Meeting of the Italian Statistical Society, Padova.
Sun, Y., & Genton, M. G. (2011). Functional boxplots. Journal of Computational and Graphical Statistics, 20, 316–334.
Sun, Y., & Genton, M. G. (2012). Adjusted functional boxplots for spatio-temporal data visualization and outlier detection. Environmetrics, 23, 54–64.
Yamanishi, Y., & Tanaka, Y. (2003). Geographically weighted functional multiple regression analysis: A numerical investigation. Journal of Japanese Society of Computational Statistics, 15, 307–317.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Romano, E., Mateu, J. (2013). Outlier Detection for Geostatistical Functional Data: An Application to Sensor Data. In: Giusti, A., Ritter, G., Vichi, M. (eds) Classification and Data Mining. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28894-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-28894-4_16
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28893-7
Online ISBN: 978-3-642-28894-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)