Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Outlier Detection for Geostatistical Functional Data: An Application to Sensor Data

  • Conference paper
  • First Online:
Classification and Data Mining

Abstract

In this paper we propose an outlier detection method for geostatistical functional data. Our approach generalizes the functional proposal of Febrero et al. (Comput 5 Stat 22(3):411–427, 2007; Environmetrics 19(4):331–345, 2008) in the spatial framework. It is based on the concept of the kernelized functional modal depth that we have opportunely defined extending the functional modal depth. As an illustration, the methodology is applied to sensor data corresponding to long-term daily climatic time series from meteorological stations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baladandayuthapani, V., Mallick, B., Hong, M., Lupton, J., Turner, N., & Caroll, R. (2008). Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinoginesis. Biometrics, 64, 64–73.

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie, N. (1993). Statistics for spatial data. New York: Wiley.

    Google Scholar 

  • Cuevas, A., Febrero, M., & Fraiman, R. (2006). On the use of bootstrap for estimating functions with functional data. Computational Statistics and Data Analysis, 51, 1063–1074.

    Article  MathSciNet  MATH  Google Scholar 

  • Cuevas, A., Febrero, M., & Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics, 22, 481–496. doi:10.1007/s00180-007-0053-0.

    Article  MathSciNet  MATH  Google Scholar 

  • Delicado, P., Giraldo, R., Comas, C., & Mateu, J. (2010). Statistics for spatial functional data: Some recent contributions. Environmetrics, 21, 224–239.

    Article  MathSciNet  Google Scholar 

  • Febrero, M., Galeano, P., & Gonzalez-Manteiga, W. (2007). Functional analysis of NOx levels: Location and scale estimation and outlier detection. Computational Statistics, 22(3), 411–427.

    Article  MathSciNet  MATH  Google Scholar 

  • Febrero, M., Galeano, P., & Gonzalez-Manteiga, W. (2008). Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels. Environmetrics, 19(4), 331–345.

    Article  MathSciNet  Google Scholar 

  • Giraldo, R., Delicado, P., & Mateu, J. (2010). Continuous time-varying kriging for spatial prediction of functional data: an environmental application. Journal of Agricultural, Biological, and Environmental Statistics (JABES), 15, 66–82.

    Google Scholar 

  • Giraldo, R., Delicado, P., & Mateu, J. (2011). Ordinary kriging for function-valued spatial data. Environmental and Ecological Statistics, 18, 411–426. doi:10.1007/s10651-010-0143-y

    Article  MathSciNet  Google Scholar 

  • Giraldo, R., Delicado, P., & Mateu, J. (2012). Hierarchical clustering of spatially correlated functional data. Statistica Neerlandica. doi:10.1111/j.1467-9574.2012.00522.x

    Google Scholar 

  • Giraldo, R., & Mateu, J. (2012). Kriging for functional data. In Encyclopedia of Environmetrics, (2nd ed.). Forthcoming

    Google Scholar 

  • Hawkins, D. M. (1980). Identification of outliers. London: Chapman and Hall.

    MATH  Google Scholar 

  • Hyndman, R. J., & Shang, H. L. (2010). Rainbow plots, bagplots, and boxplots for functional data. Journal of Computational and Graphical Statistics, 19, 29–45.

    Article  MathSciNet  Google Scholar 

  • Nerini, D., & Monestiez, P. (2008). A cokriging method for spatial functional data With applications in oceanology. Long summary sent to “The First International Workshop on Functional and Operational Statistics”, Toulouse.

    Google Scholar 

  • Nerini, D., Monestiez, P., & Manté, C. (2010). A cokriging method for spatial functional. Journal of Multivariate Analysis, 101, 409–418.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsay, J. E., & Silverman, B. W. (2005). Functional data analysis (2nd ed.). Springer: New York.

    Google Scholar 

  • Romano, E., Balzanella, A., & Verde, R. (2010). A regionalization method for spatial functional data based on variogram models: An application on environmental data. In Proceedings of the 45th Scientific Meeting of the Italian Statistical Society, Padova.

    Google Scholar 

  • Sun, Y., & Genton, M. G. (2011). Functional boxplots. Journal of Computational and Graphical Statistics, 20, 316–334.

    Article  MathSciNet  Google Scholar 

  • Sun, Y., & Genton, M. G. (2012). Adjusted functional boxplots for spatio-temporal data visualization and outlier detection. Environmetrics, 23, 54–64.

    Article  MathSciNet  Google Scholar 

  • Yamanishi, Y., & Tanaka, Y. (2003). Geographically weighted functional multiple regression analysis: A numerical investigation. Journal of Japanese Society of Computational Statistics, 15, 307–317.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Romano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Romano, E., Mateu, J. (2013). Outlier Detection for Geostatistical Functional Data: An Application to Sensor Data. In: Giusti, A., Ritter, G., Vichi, M. (eds) Classification and Data Mining. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28894-4_16

Download citation

Publish with us

Policies and ethics