Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fuzzy C-means Clustering with Bilateral Filtering for Medical Image Segmentation

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7208))

Included in the following conference series:

Abstract

Fuzzy c-means (FCM) is a widely used unsupervised pattern recognition method for medical image segmentation. The conventional FCM algorithm and some existing variants are either sensitive to noise or prone to loss of details. This paper presents a modified FCM algorithm that incorporates bilateral filtering for medical image segmentation. The experimental results and quantitative analyses suggest that, compared to the conventional FCM, the proposed method improves clustering performance with higher standard of noise-resistance and detail-preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. James, C.B., Robert, E., William, F.: FCM: the Fuzzy C-means Clustering Algorithm. Computers & Geosciences 10(2-3), 191–203 (1984)

    Article  Google Scholar 

  2. Clark, M.C., Hall, L.O., Goldgof, D.B., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S.: MRI Segmentation Using Fuzzy Clustering Techniques. IEEE Eng. Med. Biol. 13, 730–742 (1994)

    Article  Google Scholar 

  3. Pham, D.L., Prince, J.L.: Adaptive Fuzzy Segmentation of Magnetic Resonance Image. IEEE Trans. Med. Imaging 18, 737–752 (1999)

    Article  Google Scholar 

  4. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of International Conference on Computer Vision, pp. 839–846 (1998)

    Google Scholar 

  5. Vijaya, G., Vasudevan, V.: Bilateral Filtering Using Modified Fuzzy Clustering for Image Denoising. International Journal on Computer Science and Engineering 3, 45–49 (2010)

    Google Scholar 

  6. Höppner, F., Klawonn, F.: Improved Fuzzy Partitions for Fuzzy Regression Model. International Journal of Approximate Reasoning 32, 85–102 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhu, L., Chung, F.L., Wang, S.: Generalized Fuzzy C-means Clustering Algorithm with Improved Fuzzy Partitions. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39(3), 578–591 (2009)

    Article  Google Scholar 

  8. Pedrycz, W., Waletzky, J.: Fuzzy Clustering with Partial Supervision. IEEE Trans. Syst. Man Cybern. Part B Cybern. 27, 787–795 (1997)

    Article  Google Scholar 

  9. Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriaty, T.: A Modified Fuzzy C-means Algorithm for Bias Field Estimation and Segmentation of MRI Data. IEEE Trans. Med. Imaging 21, 193–199 (2002)

    Article  Google Scholar 

  10. Ahmed, M.N., Yamany, S.M., Farag, A.A., Moriarty, T.: Bias Field Estimation and Adaptive Segmentation of MRI Data Using Modified Fuzzy C-means algorithm. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 250–255 (1999)

    Google Scholar 

  11. Chen, S.C., Zhang, D.Q.: Robust Image Segmentation Using FCM with Spatial Constraints Based on New Kernel-Induced Distance Measure. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(4), 1907–1916 (2004)

    Article  Google Scholar 

  12. Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J., Chen, T.J.: Fuzzy C-means Clustering with Spatial Information for Image Segmentation. Computerized Medical Imaging and Graphics 30(1), 9–15 (2006)

    Article  Google Scholar 

  13. Bezdek, J.C.: Cluster Validity with Fuzzy Sets. J. Cybern. 3, 58–73 (1974)

    MathSciNet  Google Scholar 

  14. Bezdek, J.C.: Mathematical Models for Systematic and Taxonomy. In: Proceedings of Eighth International Conference on Numerical Taxonomy, vol. 3, pp. 143–166 (1975)

    Google Scholar 

  15. Xie, X.L., Beni, G.: A Validity Measure for Fuzzy Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 3, 841–846 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Xiao, K., Liang, A., Guan, H. (2012). Fuzzy C-means Clustering with Bilateral Filtering for Medical Image Segmentation. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28942-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28942-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28941-5

  • Online ISBN: 978-3-642-28942-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics