Abstract
Fuzzy c-means (FCM) is a widely used unsupervised pattern recognition method for medical image segmentation. The conventional FCM algorithm and some existing variants are either sensitive to noise or prone to loss of details. This paper presents a modified FCM algorithm that incorporates bilateral filtering for medical image segmentation. The experimental results and quantitative analyses suggest that, compared to the conventional FCM, the proposed method improves clustering performance with higher standard of noise-resistance and detail-preservation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
James, C.B., Robert, E., William, F.: FCM: the Fuzzy C-means Clustering Algorithm. Computers & Geosciences 10(2-3), 191–203 (1984)
Clark, M.C., Hall, L.O., Goldgof, D.B., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S.: MRI Segmentation Using Fuzzy Clustering Techniques. IEEE Eng. Med. Biol. 13, 730–742 (1994)
Pham, D.L., Prince, J.L.: Adaptive Fuzzy Segmentation of Magnetic Resonance Image. IEEE Trans. Med. Imaging 18, 737–752 (1999)
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of International Conference on Computer Vision, pp. 839–846 (1998)
Vijaya, G., Vasudevan, V.: Bilateral Filtering Using Modified Fuzzy Clustering for Image Denoising. International Journal on Computer Science and Engineering 3, 45–49 (2010)
Höppner, F., Klawonn, F.: Improved Fuzzy Partitions for Fuzzy Regression Model. International Journal of Approximate Reasoning 32, 85–102 (2003)
Zhu, L., Chung, F.L., Wang, S.: Generalized Fuzzy C-means Clustering Algorithm with Improved Fuzzy Partitions. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39(3), 578–591 (2009)
Pedrycz, W., Waletzky, J.: Fuzzy Clustering with Partial Supervision. IEEE Trans. Syst. Man Cybern. Part B Cybern. 27, 787–795 (1997)
Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriaty, T.: A Modified Fuzzy C-means Algorithm for Bias Field Estimation and Segmentation of MRI Data. IEEE Trans. Med. Imaging 21, 193–199 (2002)
Ahmed, M.N., Yamany, S.M., Farag, A.A., Moriarty, T.: Bias Field Estimation and Adaptive Segmentation of MRI Data Using Modified Fuzzy C-means algorithm. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 250–255 (1999)
Chen, S.C., Zhang, D.Q.: Robust Image Segmentation Using FCM with Spatial Constraints Based on New Kernel-Induced Distance Measure. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(4), 1907–1916 (2004)
Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J., Chen, T.J.: Fuzzy C-means Clustering with Spatial Information for Image Segmentation. Computerized Medical Imaging and Graphics 30(1), 9–15 (2006)
Bezdek, J.C.: Cluster Validity with Fuzzy Sets. J. Cybern. 3, 58–73 (1974)
Bezdek, J.C.: Mathematical Models for Systematic and Taxonomy. In: Proceedings of Eighth International Conference on Numerical Taxonomy, vol. 3, pp. 143–166 (1975)
Xie, X.L., Beni, G.: A Validity Measure for Fuzzy Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 3, 841–846 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, Y., Xiao, K., Liang, A., Guan, H. (2012). Fuzzy C-means Clustering with Bilateral Filtering for Medical Image Segmentation. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28942-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-28942-2_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28941-5
Online ISBN: 978-3-642-28942-2
eBook Packages: Computer ScienceComputer Science (R0)