Abstract
Fuzzy c-means algorithm (FCM) is one of the most widely used clustering methods for modern medical image segmentation applications. However the conventional FCM algorithm has certain possibilities of converging to a local minimum of the objective function, thus lead to undesired segmentation results. To address this issue, an improved FCM which is based on clustering centroids updates with the use of particle swarm optimization (PSO) is proposed in this paper. This algorithm is designed to support multidimensional feature data and be accessible through parallel computation. The experimental results suggest that, compared to the conventional FCM algorithm, the proposed algorithm leads to higher chances of global optimum clustering and is less computationally intensive when large clustering number is needed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bezdek, J., Hall, L., Clarke, L.: Review of MR image segmentation using pattern recognition. Med. Phys. 20, 1033–1048 (1993)
Brandt, M.E., Bohan, T.P., Kramer, L.A., Fletcher, J.M.: Estimation of CSF, white matter and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images. Compute. Med. Imaging Graph. 18, 25–34 (1994)
Clark, M.C., Hall, L.O., Goldgof, D.B., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S.: MRI segmentation using fuzzy clustering techniques. IEEE Eng. Med. Biol. 13, 730–742 (1994)
Pham, D.L., Prince, J.L.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Med. Imaging 18, 737–752 (1999)
Lyer, N.S., Kandel, A., Schneider, M.: Feature-based fuzzy classification for interpretation of mammograms. Fuzzy Sets Syst. 114, 271–280 (2002)
Yang, M.S., Hu, Y.J., Lin, K.C.R., Lin, C.C.L.: Segmentation techniques for tissue differentiation in MRI of Ophthalmology using fuzzy clustering algorithms. Magn. Reson. Imaging 20, 173–179 (2002)
Chuang, K.-S., Tzeng, H.-L., Chen, S., Wu, J., Chen, T.-J.: Fuzzy c-means clustering with spatial information for image segmentation. Compute. Med. Imaging Graph. 30, 9–15 (2006)
Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact, well-separated clusters. Journal of Cybernetics 3, 32–57 (1973)
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms, pp. 65–70. Plenum press, New York (1981)
Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. of the 6th International Symposium on Micro Machine and Human Scince, Nagoya, Japan, pp. 39–43 (1995)
Kennedy, J., Engelbrech, R.C.: Particle swarm optimization. In: Proc. of the IEEE International Conference on Neural Networks, Piscataway, NJ, vol. 4, pp. 1942–1948 (1995)
Kennedy, J.: The particle swarm: Social adaptation of knowledge. In: Proceedings of the 1997 International Conference on Evolutionary Computation, Indianapolis, Indiana, pp. 303–308. IEEE Service Center, Piscataway (1997)
Hall, L.O., Ozyurt, I.B., Bezdek, J.C.: Clustering with a genetically optimized approach. IEEE Trans. Evolutionary Computation 3(2), 103–112 (1999)
Alata, M., Molhim, M., Ramini, A.: Optimizing of Fuzzy C-Means Clustering Algorithm Using GA. World Academy of Science, Engineering and Technology 39 (2008)
Liu, H.-C., Jeng, B.-C., Yih, J.-M., Yu, Y.-K.: Fuzzy C-Means Algorithm Based on Standard Mahalanobis Distances. In: Proceedings of the 2009 International Symposium on Information Processing (ISIP 2009), Huangshan, P. R, China, pp. 422–427 (2009)
Liu, H.-C., Yih, J.-M., Lin, W.-C., Liu, T.-S.: Fuzzy C-Means Algorithm Based on PSO and Mahalanobis Distance. International Journal of Innovative Computing, Information and Control 5, 5033–5040 (2009)
Liu, H., Sun, J., Wu, H., Teng, S., Tan, Z.: High Resolution Sonar Image Segmentation by PSO based Fuzzy Cluster Method. In: 2010 Fourth International Conference on Genetic and Evolutionary Computing (2010)
Yih, J.-M., Lin, Y.-H., Liu, H.-C.: Clustering Analysis Method based on Fuzzy C-Means Algorithm of PSO and PPSO with Application in Real Data. International Journal of Geology 4(1) (2007)
Ichihashi, H., Honda, K., Notsu, A., Ohta, K.: Fuzzy c-Means Classifier with Particle Swarm Optimization. In: 2008 IEEE International Conference on Fuzzy Systems (2008)
Bezdek, J.C., Ehrlich, R., Full, W.: FCM: The Fuzzy c-Means Clustering Algorithm. Computers and Geosciences 10, 191–203 (1984)
Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence (2009)
Bezdek, J.C.: Cluster validity with fuzzy sets. J. Cybern. 3, 58–73 (1974)
Bezdek, J.C.: Mathematical models for systematic and taxonomy. In: Proceedings of Eigth International Conference on Numerical Taxonomy, San Francisco, pp. 143–166 (1975)
Xie, X.L., Beni, G.A.: Validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 3, 841–846 (1991)
Fukuyama, Y., Sugeno, M.: A new method of choosing the number of clusters for the fuzzy c-means method. In: Proceedings of Fifth Fuzzy System Symposium, pp. 247–250 (1989)
The Whole Brain Atlas, http://www.med.harvard.edu/AANLIB/home.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pang, L., Xiao, K., Liang, A., Guan, H. (2012). A Improved Clustering Analysis Method Based on Fuzzy C-Means Algorithm by Adding PSO Algorithm. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28942-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-28942-2_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28941-5
Online ISBN: 978-3-642-28942-2
eBook Packages: Computer ScienceComputer Science (R0)