Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Improved Clustering Analysis Method Based on Fuzzy C-Means Algorithm by Adding PSO Algorithm

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7208))

Included in the following conference series:

  • 1905 Accesses

Abstract

Fuzzy c-means algorithm (FCM) is one of the most widely used clustering methods for modern medical image segmentation applications. However the conventional FCM algorithm has certain possibilities of converging to a local minimum of the objective function, thus lead to undesired segmentation results. To address this issue, an improved FCM which is based on clustering centroids updates with the use of particle swarm optimization (PSO) is proposed in this paper. This algorithm is designed to support multidimensional feature data and be accessible through parallel computation. The experimental results suggest that, compared to the conventional FCM algorithm, the proposed algorithm leads to higher chances of global optimum clustering and is less computationally intensive when large clustering number is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bezdek, J., Hall, L., Clarke, L.: Review of MR image segmentation using pattern recognition. Med. Phys. 20, 1033–1048 (1993)

    Article  Google Scholar 

  2. Brandt, M.E., Bohan, T.P., Kramer, L.A., Fletcher, J.M.: Estimation of CSF, white matter and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images. Compute. Med. Imaging Graph. 18, 25–34 (1994)

    Article  Google Scholar 

  3. Clark, M.C., Hall, L.O., Goldgof, D.B., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S.: MRI segmentation using fuzzy clustering techniques. IEEE Eng. Med. Biol. 13, 730–742 (1994)

    Article  Google Scholar 

  4. Pham, D.L., Prince, J.L.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Med. Imaging 18, 737–752 (1999)

    Article  Google Scholar 

  5. Lyer, N.S., Kandel, A., Schneider, M.: Feature-based fuzzy classification for interpretation of mammograms. Fuzzy Sets Syst. 114, 271–280 (2002)

    Google Scholar 

  6. Yang, M.S., Hu, Y.J., Lin, K.C.R., Lin, C.C.L.: Segmentation techniques for tissue differentiation in MRI of Ophthalmology using fuzzy clustering algorithms. Magn. Reson. Imaging 20, 173–179 (2002)

    Article  Google Scholar 

  7. Chuang, K.-S., Tzeng, H.-L., Chen, S., Wu, J., Chen, T.-J.: Fuzzy c-means clustering with spatial information for image segmentation. Compute. Med. Imaging Graph. 30, 9–15 (2006)

    Article  Google Scholar 

  8. Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact, well-separated clusters. Journal of Cybernetics 3, 32–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms, pp. 65–70. Plenum press, New York (1981)

    MATH  Google Scholar 

  10. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. of the 6th International Symposium on Micro Machine and Human Scince, Nagoya, Japan, pp. 39–43 (1995)

    Google Scholar 

  11. Kennedy, J., Engelbrech, R.C.: Particle swarm optimization. In: Proc. of the IEEE International Conference on Neural Networks, Piscataway, NJ, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  12. Kennedy, J.: The particle swarm: Social adaptation of knowledge. In: Proceedings of the 1997 International Conference on Evolutionary Computation, Indianapolis, Indiana, pp. 303–308. IEEE Service Center, Piscataway (1997)

    Google Scholar 

  13. Hall, L.O., Ozyurt, I.B., Bezdek, J.C.: Clustering with a genetically optimized approach. IEEE Trans. Evolutionary Computation 3(2), 103–112 (1999)

    Article  Google Scholar 

  14. Alata, M., Molhim, M., Ramini, A.: Optimizing of Fuzzy C-Means Clustering Algorithm Using GA. World Academy of Science, Engineering and Technology 39 (2008)

    Google Scholar 

  15. Liu, H.-C., Jeng, B.-C., Yih, J.-M., Yu, Y.-K.: Fuzzy C-Means Algorithm Based on Standard Mahalanobis Distances. In: Proceedings of the 2009 International Symposium on Information Processing (ISIP 2009), Huangshan, P. R, China, pp. 422–427 (2009)

    Google Scholar 

  16. Liu, H.-C., Yih, J.-M., Lin, W.-C., Liu, T.-S.: Fuzzy C-Means Algorithm Based on PSO and Mahalanobis Distance. International Journal of Innovative Computing, Information and Control 5, 5033–5040 (2009)

    Google Scholar 

  17. Liu, H., Sun, J., Wu, H., Teng, S., Tan, Z.: High Resolution Sonar Image Segmentation by PSO based Fuzzy Cluster Method. In: 2010 Fourth International Conference on Genetic and Evolutionary Computing (2010)

    Google Scholar 

  18. Yih, J.-M., Lin, Y.-H., Liu, H.-C.: Clustering Analysis Method based on Fuzzy C-Means Algorithm of PSO and PPSO with Application in Real Data. International Journal of Geology 4(1) (2007)

    Google Scholar 

  19. Ichihashi, H., Honda, K., Notsu, A., Ohta, K.: Fuzzy c-Means Classifier with Particle Swarm Optimization. In: 2008 IEEE International Conference on Fuzzy Systems (2008)

    Google Scholar 

  20. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: The Fuzzy c-Means Clustering Algorithm. Computers and Geosciences 10, 191–203 (1984)

    Article  Google Scholar 

  21. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence (2009)

    Google Scholar 

  22. Bezdek, J.C.: Cluster validity with fuzzy sets. J. Cybern. 3, 58–73 (1974)

    MathSciNet  Google Scholar 

  23. Bezdek, J.C.: Mathematical models for systematic and taxonomy. In: Proceedings of Eigth International Conference on Numerical Taxonomy, San Francisco, pp. 143–166 (1975)

    Google Scholar 

  24. Xie, X.L., Beni, G.A.: Validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 3, 841–846 (1991)

    Article  Google Scholar 

  25. Fukuyama, Y., Sugeno, M.: A new method of choosing the number of clusters for the fuzzy c-means method. In: Proceedings of Fifth Fuzzy System Symposium, pp. 247–250 (1989)

    Google Scholar 

  26. The Whole Brain Atlas, http://www.med.harvard.edu/AANLIB/home.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pang, L., Xiao, K., Liang, A., Guan, H. (2012). A Improved Clustering Analysis Method Based on Fuzzy C-Means Algorithm by Adding PSO Algorithm. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28942-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28942-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28941-5

  • Online ISBN: 978-3-642-28942-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics