Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic Crime Prediction Using Events Extracted from Twitter Posts

  • Conference paper
Social Computing, Behavioral - Cultural Modeling and Prediction (SBP 2012)

Abstract

Prior work on criminal incident prediction has relied primarily on the historical crime record and various geospatial and demographic information sources. Although promising, these models do not take into account the rich and rapidly expanding social media context that surrounds incidents of interest. This paper presents a preliminary investigation of Twitter-based criminal incident prediction. Our approach is based on the automatic semantic analysis and understanding of natural language Twitter posts, combined with dimensionality reduction via latent Dirichlet allocation and prediction via linear modeling. We tested our model on the task of predicting future hit-and-run crimes. Evaluation results indicate that the model comfortably outperforms a baseline model that predicts hit-and-run incidents uniformly across all days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asur, S., Huberman, B.: Predicting the future with social media. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, pp. 492–499. IEEE (2010)

    Google Scholar 

  2. Bermingham, A., Smeaton, A.: On using twitter to monitor political sentiment and predict election results. In: Proceedings of the Workshop on Sentiment Analysis Where AI Meets Psychology (SAAIP 2011), Asian Federation of Natural Language Processing, Chiang Mai, Thailand, pp. 2–10 (November 2011)

    Google Scholar 

  3. Blei, D., Carin, L., Dunson, D.: Probabilistic topic models. IEEE Signal Processing Magazine 27(6), 55–65 (2010)

    Google Scholar 

  4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  5. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. Journal of Computational Science (2011)

    Google Scholar 

  6. Chainey, S., Tompson, L., Uhlig, S.: The utility of hotspot mapping for predicting spatial patterns of crime. Security Journal 21, 428 (2008)

    Google Scholar 

  7. Eck, J., Chainey, S., Cameron, J., Leitner, M., Wilson, R.: Mapping crime: Understanding hot spots (2005)

    Google Scholar 

  8. Gerber, M., Chai, J., Meyers, A.: The role of implicit argumentation in nominal SRL. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 146–154. Association for Computational Linguistics, Boulder (2009)

    Google Scholar 

  9. Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Computational Linguistics 28, 245–288 (2002)

    Article  Google Scholar 

  10. Howard, P.N., Duffy, A., Freelon, D., Hussain, M., Mari, W., Mazaid, M.: Opening closed regimes: What was the role of social media during the arab spring? Tech. rep., Project on Information Technology and Political Islam, University of Washington, Seattle (January 2011)

    Google Scholar 

  11. Màrquez, L., Carreras, X., Litkowski, K.C., Stevenson, S.: Semantic role labeling: an introduction to the special issue. Comput. Linguist. 34(2), 145–159 (2008)

    Article  Google Scholar 

  12. Mohler, G.O., Short, M.B., Brantingham, P.J., Schoenberg, F.P., Tita, G.E.: Selfexciting point process modeling of crime. Journal of the American Statistical Association 106(493), 100–108 (2011)

    Article  MathSciNet  Google Scholar 

  13. Punyakanok, V., Roth, D., Yih, W.T.: The importance of syntactic parsing and inference in semantic role labeling. Comput. Linguist. 34(2), 257–287 (2008)

    Article  Google Scholar 

  14. Wang, X., Brown, D.E.: The spatio-temporal generalized additive model for criminal incidents. In: ISI (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, X., Gerber, M.S., Brown, D.E. (2012). Automatic Crime Prediction Using Events Extracted from Twitter Posts. In: Yang, S.J., Greenberg, A.M., Endsley, M. (eds) Social Computing, Behavioral - Cultural Modeling and Prediction. SBP 2012. Lecture Notes in Computer Science, vol 7227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29047-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29047-3_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29046-6

  • Online ISBN: 978-3-642-29047-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics