Abstract
Social networks affect in such a fundamental way the dynamics of the population they support that the global, population-wide behavior that one observes often bears no relation to the agent processes it stems from. Up to now, linking the global networked dynamics to such agent mechanisms has remained elusive. Here we define an observable dynamic and use it to track the self-organization of cooperators when co-evolving with defectors in networked populations interacting via a Prisoner’s Dilemma. Computations on homogeneous networks evolve towards the coexistence between cooperator and defector agents, while computations in heterogeneous networks lead to the coordination between them. We show how the global dynamics co-evolves with the motifs of cooperator agents in the population, the overall emergence of cooperation depending sensitively on this co-evolution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adar, E., Huberman, B.: Free riding on gnutella. First Monday 5(10-2) (2000)
Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine 40(8), 102–114 (2002)
Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proceedings of the National Academy of Sciences 97, 11149–11152 (2000)
Axelrod, R.: The Evolution of Cooperation. Penguin Books, Harmondsworth (1989)
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical processes in complex networks. Cambridge University Press, Cambridge (2008)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial systems, vol. (1). Oxford University Press, USA (1999)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Inspiration for optimization from social insect behaviour. Nature 406(6791), 39–42 (2000)
Borgers, T., Sarin, R.: Learning through reinforcement and replicator dynamics. Journal of Economic Theory 77(1), 1–14 (1997)
Centola, D.: The spread of behavior in an online social network experiment. Science 329, 1194 (2010)
Christakis, N.A., Fowler, J.H.: The collective dynamics of smoking in a large social network. New England Journal of Medicine 358(21), 2249–2258 (2008)
Dorogovtsev, S.N.: Lectures on Complex Networks. Oxford University Press, USA (2010)
Fowler, J.H., Christakis, N.A.: Cooperative behavior cascades in human social networks. Proceedings of the National Academy of Sciences 107(12), 5334–5338 (2010)
Gómez-Gardeñes, J., Campillo, M., Floría, L.M., Moreno, Y.: Dynamical organization of cooperation in complex topologies. Physical Review Letters 98(10), 108103 (2007)
Granovetter, M.: The strength of weak ties. American Journal of Sociolgy 78, 1360 (1973)
Hauert, C.: Effects of space in 2x2 games. International Journal Bifurcation Chaos 12, 1531–1548 (2002)
Hofbauer, J., Sigmund, K.: Evolutionary games and population dynamics. Cambridge University Press, Cambridge (1998)
Johnson, D., Maltz, D., Broch, J., et al.: Dsr: The dynamic source routing protocol for multi-hop wireless ad hoc networks. Ad Hoc Networking 5, 139–172 (2001)
van Kampen, N.: Stochastic processes in physics and chemistry. North-Holland (2007)
Kollock, P.: Social dilemmas: The anatomy of cooperation. Annual Review of Sociology 24, 183–214 (1998)
Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., Alstyne, M.V.: Computational social science. Science 323(5915), 721–723 (2009)
Lloyd, A.L., May, R.M.: How viruses spread among computers and people. Science 292, 1316–1317 (2001)
Nakamaru, M., Matsuda, H., Iwasa, Y.: The evolution of cooperation in a lattice-structured population. Journal of Theoretical Biology 184(1), 65–81 (1997)
Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)
Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.A.: A simple rule for the evolution of cooperation on graphs and social networks. Nature 441(7092), 502–505 (2006)
Onnela, J.P., Reed-Tsochas, F.: Spontaneous emergence of social influence in online systems. Proceedings of the National Academy of Sciences 107(43), 18375–18380 (2010)
Pacheco, J.M., Pinheiro, F.L., Santos, F.C.: Population structure induces a symmetry breaking favoring the emergence of cooperation. PLoS Computational Biology 5(12), e1000596 (2009)
Pacheco, J.M., Santos, F.C., Souza, M.O., Skyrms, B.: Evolutionary dynamics of collective action in n-person stag hunt dilemmas. Proceedings of the Royal Society B 276(1655), 315–321 (2009)
Perkins, C., Royer, E.: Ad-hoc on-demand distance vector routing. In: Second IEEE Workshop on Mobile Computing Systems and Applications, WMCSA 1999, pp. 90–100 (1999)
Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network. In: Proceedings of First International Conference on Peer-to-Peer Computing, pp. 99–100 (2001)
Santos, F.C., Pacheco, J.M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Physical Review Letters 95(9), 98104 (2005)
Santos, F.C., Pacheco, J.M., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proceedings of the National Academy of Sciences 103(9), 3490–3494 (2006)
Santos, F.C., Rodrigues, J.F., Pacheco, J.M.: Epidemic spreading and cooperation dynamics on homogeneous small-world networks. Physical Review E 72(5), 56128 (2005)
Santos, F., Pacheco, J.: Risk of collective failure provides an escape from the tragedy of the commons. Proceedings of the National Academy of Sciences 108(26), 10421 (2011)
Sigmund, K.: The Calculus of Selfishness. Princeton Series in Theoretical and Computational Biology. Princeton University Press (2010)
Sutton, R., Barto, A.: Reinforcement learning: An introduction, vol. 28. Cambridge University Press, Cambridge (1998)
Szabó, G., Fáth, G.: Evolutionary games on graphs. Physics Reports 446(4-6), 97–216 (2007)
Taylor, P.D., Day, T., Wild, G.: Evolution of cooperation in a finite homogeneous graph. Nature 447, 469–472 (2007)
Traulsen, A., Hauert, C.: Stochastic evolutionary game dynamics, vol. II. Wiley-VCH (2009)
Traulsen, A., Pacheco, J.M., Nowak, M.A.: Stochastic dynamics of invasion and fixation. Physical Review E 74(1 Pt 1), 11909 (2006)
Van Segbroeck, S., De Jong, S., Nowé, A., Santos, F., Lenaerts, T.: Learning to coordinate in complex networks. Adaptive Behavior 18(5), 416 (2010)
Watts, D.J.: A twenty-first century science. Nature 445(7127), 489 (2007)
Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. Knowledge Engineering Review 10(2), 115–152 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pinheiro, F.L., Santos, F.C., Pacheco, J.M. (2012). Tracking the Evolution of Cooperation in Complex Networked Populations. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2012. Lecture Notes in Computer Science, vol 7246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29066-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-29066-4_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29065-7
Online ISBN: 978-3-642-29066-4
eBook Packages: Computer ScienceComputer Science (R0)