Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Monte-Carlo Tree Search for the Physical Travelling Salesman Problem

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7248))

Included in the following conference series:

Abstract

The significant success of MCTS in recent years, particularly in the game Go, has led to the application of MCTS to numerous other domains. In an ongoing effort to better understand the performance of MCTS in open-ended real-time video games, we apply MCTS to the Physical Travelling Salesman Problem (PTSP). We discuss different approaches to tailor MCTS to this particular problem domain and subsequently identify and attempt to overcome some of the apparent shortcomings. Results show that suitable heuristics can boost the performance of MCTS significantly in this domain. However, visualisations of the search indicate that MCTS is currently seeking solutions in a rather greedy manner, and coercing it to balance short term and long term constraints for the PTSP remains an open problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Björnsson, Y., Finnsson, H.: CadiaPlayer: A Simulation-Based General Game Player. IEEE Trans. on Computational Intelligence and AI in Games 1(1), 4–15 (2009)

    Article  Google Scholar 

  2. Bnaya, Z., Felner, A., Shimony, S.E., Fried, D., Maksin, O.: Repeated-task Canadian traveler problem. In: Proceedings of the International Symposium on Combinatorial Search, pp. 24–30 (2011)

    Google Scholar 

  3. Chaslot, G.M.J.-B., Bakkes, S., Szita, I., Spronck, P.: Monte-Carlo Tree Search: A New Framework for Game AI. In: Proc. of the Artificial Intelligence for Interactive Digital Entertainment Conference, pp. 216–217 (2006)

    Google Scholar 

  4. Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Den Teuling, N.G.P.: Monte-Carlo Tree Search for the Simultaneous Move Game Tron. Univ. Maastricht, Tech. Rep. (2011)

    Google Scholar 

  6. Gelly, S., Silver, D.: Monte-Carlo tree search and rapid action value estimation in computer Go. Artificial Intelligence 175(11), 1856–1875 (2011)

    Article  MathSciNet  Google Scholar 

  7. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Matsumoto, S., Hirosue, N., Itonaga, K., Yokoo, K., Futahashi, H.: Evaluation of Simulation Strategy on Single-Player Monte-Carlo Tree Search and its Discussion for a Practical Scheduling Problem. In: Proc. of the International Multi Conference of Engineers and Computer Scientists, vol. 3, pp. 2086–2091 (2010)

    Google Scholar 

  9. Rimmel, A., Teytaud, F., Cazenave, T.: Optimization of the Nested Monte-Carlo Algorithm on the Traveling Salesman Problem with Time Windows. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 501–510. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Robles, D., Lucas, S.M.: A Simple Tree Search Method for Playing Ms. Pac-Man. In: Proc. of the IEEE Conference on Computational Intelligence and Games, pp. 249–255 (2009)

    Google Scholar 

  11. Samothrakis, S., Robles, D., Lucas, S.M.: A UCT Agent for Tron: Initial Investigations. In: Proc. of IEEE Conference on Computational Intelligence and Games, pp. 365–371 (2010)

    Google Scholar 

  12. Samothrakis, S., Robles, D., Lucas, S.M.: Fast Approximate Max-n Monte-Carlo Tree Search for Ms Pac-Man. IEEE Trans. on Computational Intelligence and AI in Games 3(2), 142–154 (2011)

    Article  Google Scholar 

  13. Schadd, M.P.D., Winands, M.H.M., van den Herik, H.J., Chaslot, G.M.J.-B., Uiterwijk, J.W.H.M.: Single-Player Monte-Carlo Tree Search. In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 1–12. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perez, D., Rohlfshagen, P., Lucas, S.M. (2012). Monte-Carlo Tree Search for the Physical Travelling Salesman Problem. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2012. Lecture Notes in Computer Science, vol 7248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29178-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29178-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29177-7

  • Online ISBN: 978-3-642-29178-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics