Abstract
The significant success of MCTS in recent years, particularly in the game Go, has led to the application of MCTS to numerous other domains. In an ongoing effort to better understand the performance of MCTS in open-ended real-time video games, we apply MCTS to the Physical Travelling Salesman Problem (PTSP). We discuss different approaches to tailor MCTS to this particular problem domain and subsequently identify and attempt to overcome some of the apparent shortcomings. Results show that suitable heuristics can boost the performance of MCTS significantly in this domain. However, visualisations of the search indicate that MCTS is currently seeking solutions in a rather greedy manner, and coercing it to balance short term and long term constraints for the PTSP remains an open problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Björnsson, Y., Finnsson, H.: CadiaPlayer: A Simulation-Based General Game Player. IEEE Trans. on Computational Intelligence and AI in Games 1(1), 4–15 (2009)
Bnaya, Z., Felner, A., Shimony, S.E., Fried, D., Maksin, O.: Repeated-task Canadian traveler problem. In: Proceedings of the International Symposium on Combinatorial Search, pp. 24–30 (2011)
Chaslot, G.M.J.-B., Bakkes, S., Szita, I., Spronck, P.: Monte-Carlo Tree Search: A New Framework for Game AI. In: Proc. of the Artificial Intelligence for Interactive Digital Entertainment Conference, pp. 216–217 (2006)
Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007)
Den Teuling, N.G.P.: Monte-Carlo Tree Search for the Simultaneous Move Game Tron. Univ. Maastricht, Tech. Rep. (2011)
Gelly, S., Silver, D.: Monte-Carlo tree search and rapid action value estimation in computer Go. Artificial Intelligence 175(11), 1856–1875 (2011)
Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006)
Matsumoto, S., Hirosue, N., Itonaga, K., Yokoo, K., Futahashi, H.: Evaluation of Simulation Strategy on Single-Player Monte-Carlo Tree Search and its Discussion for a Practical Scheduling Problem. In: Proc. of the International Multi Conference of Engineers and Computer Scientists, vol. 3, pp. 2086–2091 (2010)
Rimmel, A., Teytaud, F., Cazenave, T.: Optimization of the Nested Monte-Carlo Algorithm on the Traveling Salesman Problem with Time Windows. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 501–510. Springer, Heidelberg (2011)
Robles, D., Lucas, S.M.: A Simple Tree Search Method for Playing Ms. Pac-Man. In: Proc. of the IEEE Conference on Computational Intelligence and Games, pp. 249–255 (2009)
Samothrakis, S., Robles, D., Lucas, S.M.: A UCT Agent for Tron: Initial Investigations. In: Proc. of IEEE Conference on Computational Intelligence and Games, pp. 365–371 (2010)
Samothrakis, S., Robles, D., Lucas, S.M.: Fast Approximate Max-n Monte-Carlo Tree Search for Ms Pac-Man. IEEE Trans. on Computational Intelligence and AI in Games 3(2), 142–154 (2011)
Schadd, M.P.D., Winands, M.H.M., van den Herik, H.J., Chaslot, G.M.J.-B., Uiterwijk, J.W.H.M.: Single-Player Monte-Carlo Tree Search. In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 1–12. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Perez, D., Rohlfshagen, P., Lucas, S.M. (2012). Monte-Carlo Tree Search for the Physical Travelling Salesman Problem. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2012. Lecture Notes in Computer Science, vol 7248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29178-4_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-29178-4_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29177-7
Online ISBN: 978-3-642-29178-4
eBook Packages: Computer ScienceComputer Science (R0)