Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Collective Viewpoint Identification of Low-Level Participation

  • Conference paper
Web Technologies and Applications (APWeb 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7235))

Included in the following conference series:

Abstract

Mining microblogs is an important topic which can aid us to gather collective viewpoints on any event. However, user participation is low even for some hot events. Therefore, collective viewpoint discovery of low-level participation is a practical challenge. In this paper, we propose a Term-Retweet-Context (TRC) graph, which simultaneously incorporates text content and retweet context information, to model user retweeting. We first identify representative terms, which constitute collective viewpoints. And then we apply Random Walk on TRC graph to measure the relevance between terms and group them into collective viewpoints. Finally, extensive experiments conducted on real data collected from Sina microblog demonstrated that our proposal outperforms the state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichandran, D., Aly, M.: Video suggestion and discovery for youtube: taking random walks through the view graph. In: WWW (2008)

    Google Scholar 

  2. Banerjee, S., Ramanathan, K., Gupta, A.: Clustering short texts using wikipedia. In: SIGIR (2007)

    Google Scholar 

  3. Carenini, G., Ng, R.T., Zhou, X.: Summarizing email conversations with clue words. In: WWW (2007)

    Google Scholar 

  4. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: KDD (2004)

    Google Scholar 

  5. Hu, M., Sun, A., Lim, E.-P.: Comments-oriented blog summarization by sentence extraction. In: CIKM (2007)

    Google Scholar 

  6. Hu, X., Sun, N., Zhang, C., Chua, T.-S.: Exploiting internal and external semantics for the clustering of short texts using world knowledge. In: CIKM (2009)

    Google Scholar 

  7. Li, M., Dias, M.B., Jarman, I.H., El-Deredy, W., Lisboa, P.J.G.: Grocery shopping recommendations based on basket-sensitive random walk. In: KDD (2009)

    Google Scholar 

  8. Li, X., Shen, Y.-D., Du, L., Xiong, C.-Y.: Exploiting novelty, coverage and balance for topic-focused multi-document summarization. In: CIKM (2010)

    Google Scholar 

  9. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)

    Google Scholar 

  10. Qamra, A., Tseng, B.L., Chang, E.Y.: Mining blog stories using community-based and temporal clustering. In: CIKM (2006)

    Google Scholar 

  11. Su, Q., Xu, X., Guo, H., Guo, Z., Wu, X., Zhang, X., Swen, B., Su, Z.: Hidden sentiment association in chinese web opinion mining. In: WWW (2008)

    Google Scholar 

  12. Tong, H., Faloutsos, C., Pan, J.-Y.: Fast random walk with restart and its applications. In: ICDM (2006)

    Google Scholar 

  13. Turney, P.D.: Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews. In: ACL (2002)

    Google Scholar 

  14. Xiang, L., Yuan, Q., Zhao, S., Chen, L., Zhang, X., Yang, Q., Sun, J.: Temporal recommendation on graphs via long-and short-term preference fusion. In: KDD (2010)

    Google Scholar 

  15. Yang, Y., Pierce, T., Carbonell, J.G.: A study of retrospective and on-line event detection. In: SIGIR (1998)

    Google Scholar 

  16. Zhao, B., Zhang, Z., Gu, Y., Gong, X., Qian, W., Zhou, A.: Discovering Collective Viewpoints on Micro-blogging Events Based on Community and Temporal Aspects. In: Tang, J., King, I., Chen, L., Wang, J. (eds.) ADMA 2011, Part I. LNCS, vol. 7120, pp. 270–284. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Zhao, Y., Karypis, G.: Evaluation of hierarchical clustering algorithms for document datasets. In: CIKM (2002)

    Google Scholar 

  18. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. PVLDB, 2(1) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, B., Zhang, Z., Gu, Y., Qian, W., Zhou, A. (2012). Collective Viewpoint Identification of Low-Level Participation. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds) Web Technologies and Applications. APWeb 2012. Lecture Notes in Computer Science, vol 7235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29253-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29253-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29252-1

  • Online ISBN: 978-3-642-29253-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics