Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Distance Coloring

A Review Based on Work with Dexter Kozen

  • Chapter
Logic and Program Semantics

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7230))

Abstract

An undirected graph G = (V,E) is (d,k)-colorable if there is a vertex coloring using at most k colors such that no two vertices within distance d have the same color. It is well known that (1,2)-colorability is decidable in linear time, and that (1,k)-colorability is NP-complete for k ≥ 3. This paper presents the complexity of (d,k)-coloring for general d and k, and enumerates some interesting properties of (d,k)-colorable graphs. The main result is the dichotomy between polynomial and NP-hard instances: for fixed d ≥ 2, the distance coloring problem is polynomial time for \(k \leq \lfloor \frac{3d}{2} \rfloor\) and NP-hard for \(k > \lfloor \frac{3d}{2} \rfloor\). We present a reduction in the latter case, as well as an algorithm in the former. The algorithm entails several innovations that may be of independent interest: a generalization of tree decompositions to overlay graphs other than trees; a general construction that obtains such decompositions from certain classes of edge partitions; and the use of homology to analyze the cycle structure of colorable graphs. This paper is both a combining and reworking of the papers of Sharp and Kozen [14, 10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bollobás, B., Harris, A.J.: List-colourings of graphs. Graphs and Combinatorics 1(2), 115–127 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. The MacMillan Press Ltd. (1978)

    Google Scholar 

  3. Chetwynd, A.: Total colourings of graphs. In: Nelson, R., Wilson, R.J. (eds.) Graph Colourings. Pitman Research Notes in Mathematics Series, pp. 65–77. Longman Scientific & Technical, Longman house, Burnt Mill, Harlow, Essex, UK (1990)

    Google Scholar 

  4. Fiorini, S., Wilson, R.J.: Edge-colourings of graphs. In: Beineke, L.W., Wilson, R.J. (eds.) Selected Topics in Graph Theory, ch. 5, pp. 103–126. Academic Press, Inc., London (1978)

    Google Scholar 

  5. Gamst, A.: Some lower bounds for a class of frequency assignment problems. IEEE Trans. Veh. Technol. VT-35, 8–14 (1986)

    Article  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co. (1990)

    Google Scholar 

  7. Garey, M.R., Johnson, D.S., So, H.C.: An application of graph coloring to printed circuit testing. IEEE Transactions on Circuits and Systems CAS-23(10), 591–598 (1976)

    Article  MathSciNet  Google Scholar 

  8. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–102 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hopcroft, J., Tarjan, R.E.: Algorithm 447: Efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973)

    Article  Google Scholar 

  10. Kozen, D., Sharp, A.: On distance coloring. Technical Report cul.cis/TR2007-2084, Cornell University (2007)

    Google Scholar 

  11. Makowsky, J.A.: Colored tutte polynomials and kauffman brackets for graphs of bounded tree width. In: Proceedings of the 12th Annual Symposium on Discrete Algorithms (SODA 2001), pp. 487–495. SIAM (2001)

    Google Scholar 

  12. Noble, S.D.: Evaluating the tutte polynomial for graphs of bounded tree-width. Comb. Probab. Comput. 7(3), 307–321 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Robertson, N., Seymour, P.D.: Graph minors. ii. algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sharp, A.: Distance Coloring. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 510–521. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Wilson, B.: Line-distinguishing and harmonious colourings. In: Nelson, R., Wilson, R.J. (eds.) Graph Colourings. Pitman Research Notes in Mathematics Series, pp. 115–133. Longman Scientific & Technical, Longman house, Burnt Mill, Harlow, Essex, UK (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharp, A. (2012). On Distance Coloring. In: Constable, R.L., Silva, A. (eds) Logic and Program Semantics. Lecture Notes in Computer Science, vol 7230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29485-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29485-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29484-6

  • Online ISBN: 978-3-642-29485-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics