Abstract
We present a side by side comparison of Capsules and Closures, including a proof of bisimilarity, using small-step semantics. A similar proof was presented in [8], using big-step semantics. However, while big-step semantics only allow to talk about final results of terminating computations, the use of small-step semantics allows to prove a stronger bisimilarity involving every step of the computation and thus also applicable to infinite computations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aboul-Hosn, K.: Programming with private state. Honors Thesis, The Pennsylvania State University (December 2001), http://www.cs.cornell.edu/%7Ekamal/thesis.pdf
Aboul-Hosn, K., Kozen, D.: Relational semantics of local variable scoping. Tech. Rep. 2005-2000, Cornell University (2005), http://www.cs.cornell.edu/%7Ekamal/local.pdf
Aboul-Hosn, K., Kozen, D.: Relational Semantics for Higher-Order Programs. In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 29–48. Springer, Heidelberg (2006)
Abramsky, S., Honda, K., McCusker, G.: A fully abstract game semantics for general references. In: LICS 1998: Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science, pp. 334–344. IEEE Computer Society, Washington, DC (1998)
Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game semantics for idealized ALGOL with active expressions. Electr. Notes Theor. Comput. Sci. 3 (1996)
Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential control and state. Theoretical Computer Science 103, 235–271 (1992)
Halpern, J.Y., Meyer, A.R., Trakhtenbrot, B.A.: The semantics of local storage, or what makes the free-list free? In: Proc. 11th ACM Symp. Principles of Programming Languages (POPL 1984), New York, NY, USA, pp. 245–257 (1984)
Jeannin, J.B.: Capsules and closures. In: Mislove, M., Ouaknine, J. (eds.) Proc. 27th Conf. Math. Found. Programming Semantics (MFPS XXVII). Elsevier Electronic Notes in Theoretical Computer Science, Pittsburgh, PA (2011)
Jeannin, J.B., Kozen, D.: Computing with capsules. Tech. Rep., Computing and Information Science, Cornell University (January 2011), http://hdl.handle.net/1813/22082
Laird, J.: A Game Semantics of Local Names and Good Variables. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 289–303. Springer, Heidelberg (2004)
Mason, I.A., Talcott, C.L.: References, local variables and operational reasoning. In: Seventh Annual Symposium on Logic in Computer Science, pp. 186–197. IEEE (1992), http://www-formal.stanford.edu/MT/92lics.ps.Z
Mason, I., Talcott, C.: Programming, transforming, and proving with function abstractions and memories
Mason, I., Talcott, C.: Axiomatizing operational equivalence in the presence of side effects. In: IEEE Fourth Annual Symposium on Logic in Computer Science, pp. 284–293. IEEE Computer Society Press (1989)
Mason, I., Talcott, C.: Equivalence in functional languages with effects (1991)
Milne, R., Strachey, C.: A Theory of Programming Language Semantics. Halsted Press, New York (1977)
Moggi, E.: Notions of computation and monads. Information and Computation 93(1) (1991)
Pitts, A.M.: Operationally-based theories of program equivalence. In: Dybjer, P., Pitts, A.M. (eds.) Semantics and Logics of Computation, pp. 241–298. Publications of the Newton Institute, Cambridge University Press (1997), http://www.cs.tau.ac.il/~nachumd/formal/exam/pitts.pdf
Pitts, A.M., Stark, I.D.B.: Operational reasoning in functions with local state. In: Gordon, A.D., Pitts, A.M. (eds.) Higher Order Operational Techniques in Semantics, pp. 227–273. Cambridge University Press (1998), http://homepages.inf.ed.ac.uk/stark/operfl.pdf
Pitts, A.M., Stark, I.D.B.: Observable Properties of Higher Order Functions that Dynamically Create Local Names, or What’s New? In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 122–141. Springer, Heidelberg (1993)
Scott, D.S.: Mathematical concepts in programmng language semantics. In: Proc. 1972 Spring Joint Computer Conferences, pp. 225–234. AFIPS Press, Montvale (1972)
Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT Press, Cambridge (1981)
Sussman, G.J., Steele, G.L.: Scheme: A interpreter for extended lambda calculus. Higher-Order and Symbolic Computation 11, 405–439 (1998), http://dx.doi.org/10.1023/A:1010035624696 , 10.1023/A:1010035624696
Winskel, G.: The Formal Semantics of Programming Languages. MIT Press (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Jeannin, JB. (2012). Capsules and Closures: A Small-Step Approach. In: Constable, R.L., Silva, A. (eds) Logic and Program Semantics. Lecture Notes in Computer Science, vol 7230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29485-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-29485-3_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29484-6
Online ISBN: 978-3-642-29485-3
eBook Packages: Computer ScienceComputer Science (R0)