Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Nuprl as Logical Framework for Automating Proofs in Category Theory

  • Chapter
Logic and Program Semantics

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7230))

  • 854 Accesses

Abstract

We describe the construction of a semi-automated proof system for elementary category theory using the Nuprl proof development system as logical framework. We have used Nuprl’s display mechanism to implement the basic vocabulary and Nuprl’s rule compiler to implemented a first-order proof calculus for reasoning about categories, functors and natural transformations. To automate proofs we have formalized both standard techniques from automated theorem proving and reasoning patterns that are specific to category theory and used Nuprl’s tactic mechanism for the actual implementation. We illustrate our approach by automating proofs of natural isomorphisms between categories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, S., Bickford, M., Constable, R., Eaton, R., Kreitz, C., Lorigo, L., Moran, E.: Innovations in computational type theory using Nuprl. Journal of Applied Logic 4(4), 428–469 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allen, S., Constable, R., Eaton, R., Kreitz, C., Lorigo, L.: The Nuprl Open Logical Environment. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 428–469. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Bancerek, G.: Concrete categories. Journal of Formalized Mathematics 13 (2001)

    Google Scholar 

  4. Bancerek, G.: Miscellaneous facts about functors. Journal of Formalized Mathematics 13 (2001)

    Google Scholar 

  5. Bancerek, G.: Categorial background for duality theory. Journal of Formalized Mathematics 13 (2001)

    Google Scholar 

  6. Barr, M., Wells, C.: Category Theory for Computing Science. Prentice Hall (1990)

    Google Scholar 

  7. Constable, R., et al.: Implementing Mathematics with the Nuprl proof development system. Prentice Hall (1986)

    Google Scholar 

  8. Constable, R.: Computational Type Theory. Scholarpedia 4(2), 7618 (2008)

    Article  MathSciNet  Google Scholar 

  9. Cáccamo, M.J., Winskel, G.: A higher-order calculus for categories. Technical Report RS-01-27, BRICS, University of Aarhus (2001)

    Google Scholar 

  10. Dyckhoff, R.: Category theory as an extension of Martin-Löf type theory. Research Report CS/85/3, Revised 1988 (1988)

    Google Scholar 

  11. Eilenberg, S., MacLane, S.: General theory of natural equivalences. Trans. Amer. Math. Soc. 58, 231–244 (1945)

    MathSciNet  MATH  Google Scholar 

  12. Glimming, J.: Logic and automation for algebra of programming. Master thesis, University of Oxford (2001)

    Google Scholar 

  13. Huet, G., Saïbi, A.: Constructive category theory. In: Joint CLICS-TYPES Workshop on Categories and Type Theory. MIT Press (1995)

    Google Scholar 

  14. Knuth, D., Bendix, P.: Simple word problems in universal algebra. In: Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970)

    Google Scholar 

  15. Kreitz, C., Hayden, M., Hickey, J.: A Proof Environment for the Development of Group Communication Systems. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 317–331. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  16. Kozen, D.: Toward the automation of category theory. Technical Report 2004-1964, Computer Science Department, Cornell University (2004)

    Google Scholar 

  17. Kozen, D., Kreitz, C., Richter, E.: Automating Proofs in Category Theory. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 392–407. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Kreitz, C.: The Nuprl Proof Development System, V5: Reference Manual and User’s Guide. Computer Science Department, Cornell University (2002)

    Google Scholar 

  19. Kreitz, C.: Building reliable, high-performance networks with the Nuprl proof development system. Journal of Functional Programming 14(1), 21–68 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, X., Kreitz, C., van Renesse, R., Hickey, J., Hayden, M., Birman, K., Constable, R.: Building reliable, high-performance communication systems from components. In: 17th ACM Symposium on Operating Systems Principles, vol. 34(5), pp. 80–92 (1999); Operating Systems Review

    Google Scholar 

  21. MacLane, S.: Categories for the Working Mathematician. Springer (1971)

    Google Scholar 

  22. Mizar home page, http://www.mizar.org

  23. Martin-Löf, P.: Intuitionistic Type Theory, Bibliopolis (1984)

    Google Scholar 

  24. O’Keefe, G.: Towards a readable formalisation of category theory. In: Atkinson, M. (ed.) Computing: The Australasian Theory Symposium. ENTCS, vol. 91, pp. 212–228. Elsevier (2004)

    Google Scholar 

  25. Rydeheard, D., Burstall, R.: Computational Category Theory. International Series in Computer Science. Prentice Hall (1988)

    Google Scholar 

  26. Reed, G.M., Roscoe, A.W., Wachter, R.F.: Topology and Category Theory in Computer Science. Oxford University Press (1991)

    Google Scholar 

  27. Saïbi, A.: Constructive category theory (1995), http://coq.inria.fr/contribs/category.tar.gz

  28. Simpson, C.: Category theory in ZFC (2004), http://coq.inria.fr/contribs/CatsInZFC.tar.gz

  29. Trybulec, A.: Some isomorphisms between functor categories. Journal of Formalized Mathematics 4 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kreitz, C. (2012). Nuprl as Logical Framework for Automating Proofs in Category Theory. In: Constable, R.L., Silva, A. (eds) Logic and Program Semantics. Lecture Notes in Computer Science, vol 7230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29485-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29485-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29484-6

  • Online ISBN: 978-3-642-29485-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics