Abstract
We describe the construction of a semi-automated proof system for elementary category theory using the Nuprl proof development system as logical framework. We have used Nuprl’s display mechanism to implement the basic vocabulary and Nuprl’s rule compiler to implemented a first-order proof calculus for reasoning about categories, functors and natural transformations. To automate proofs we have formalized both standard techniques from automated theorem proving and reasoning patterns that are specific to category theory and used Nuprl’s tactic mechanism for the actual implementation. We illustrate our approach by automating proofs of natural isomorphisms between categories.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allen, S., Bickford, M., Constable, R., Eaton, R., Kreitz, C., Lorigo, L., Moran, E.: Innovations in computational type theory using Nuprl. Journal of Applied Logic 4(4), 428–469 (2006)
Allen, S., Constable, R., Eaton, R., Kreitz, C., Lorigo, L.: The Nuprl Open Logical Environment. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 428–469. Springer, Heidelberg (2000)
Bancerek, G.: Concrete categories. Journal of Formalized Mathematics 13 (2001)
Bancerek, G.: Miscellaneous facts about functors. Journal of Formalized Mathematics 13 (2001)
Bancerek, G.: Categorial background for duality theory. Journal of Formalized Mathematics 13 (2001)
Barr, M., Wells, C.: Category Theory for Computing Science. Prentice Hall (1990)
Constable, R., et al.: Implementing Mathematics with the Nuprl proof development system. Prentice Hall (1986)
Constable, R.: Computational Type Theory. Scholarpedia 4(2), 7618 (2008)
Cáccamo, M.J., Winskel, G.: A higher-order calculus for categories. Technical Report RS-01-27, BRICS, University of Aarhus (2001)
Dyckhoff, R.: Category theory as an extension of Martin-Löf type theory. Research Report CS/85/3, Revised 1988 (1988)
Eilenberg, S., MacLane, S.: General theory of natural equivalences. Trans. Amer. Math. Soc. 58, 231–244 (1945)
Glimming, J.: Logic and automation for algebra of programming. Master thesis, University of Oxford (2001)
Huet, G., Saïbi, A.: Constructive category theory. In: Joint CLICS-TYPES Workshop on Categories and Type Theory. MIT Press (1995)
Knuth, D., Bendix, P.: Simple word problems in universal algebra. In: Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970)
Kreitz, C., Hayden, M., Hickey, J.: A Proof Environment for the Development of Group Communication Systems. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 317–331. Springer, Heidelberg (1998)
Kozen, D.: Toward the automation of category theory. Technical Report 2004-1964, Computer Science Department, Cornell University (2004)
Kozen, D., Kreitz, C., Richter, E.: Automating Proofs in Category Theory. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 392–407. Springer, Heidelberg (2006)
Kreitz, C.: The Nuprl Proof Development System, V5: Reference Manual and User’s Guide. Computer Science Department, Cornell University (2002)
Kreitz, C.: Building reliable, high-performance networks with the Nuprl proof development system. Journal of Functional Programming 14(1), 21–68 (2004)
Liu, X., Kreitz, C., van Renesse, R., Hickey, J., Hayden, M., Birman, K., Constable, R.: Building reliable, high-performance communication systems from components. In: 17th ACM Symposium on Operating Systems Principles, vol. 34(5), pp. 80–92 (1999); Operating Systems Review
MacLane, S.: Categories for the Working Mathematician. Springer (1971)
Mizar home page, http://www.mizar.org
Martin-Löf, P.: Intuitionistic Type Theory, Bibliopolis (1984)
O’Keefe, G.: Towards a readable formalisation of category theory. In: Atkinson, M. (ed.) Computing: The Australasian Theory Symposium. ENTCS, vol. 91, pp. 212–228. Elsevier (2004)
Rydeheard, D., Burstall, R.: Computational Category Theory. International Series in Computer Science. Prentice Hall (1988)
Reed, G.M., Roscoe, A.W., Wachter, R.F.: Topology and Category Theory in Computer Science. Oxford University Press (1991)
Saïbi, A.: Constructive category theory (1995), http://coq.inria.fr/contribs/category.tar.gz
Simpson, C.: Category theory in ZFC (2004), http://coq.inria.fr/contribs/CatsInZFC.tar.gz
Trybulec, A.: Some isomorphisms between functor categories. Journal of Formalized Mathematics 4 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kreitz, C. (2012). Nuprl as Logical Framework for Automating Proofs in Category Theory. In: Constable, R.L., Silva, A. (eds) Logic and Program Semantics. Lecture Notes in Computer Science, vol 7230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29485-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-29485-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29484-6
Online ISBN: 978-3-642-29485-3
eBook Packages: Computer ScienceComputer Science (R0)