Abstract
In this paper we study an online minimum makespan scheduling problem with a reordering buffer. We obtain the following results, which improve on work from FOCS 2008: i) for m identical machines, we give a 1.5-competitive online algorithm with a buffer of size 1.5m, which is better than the previous best result : 1.5-competitive algorithm with a buffer of size 1.6197m; ii) for three identical machines, to give an optimal online algorithm we reduce the size of the buffer from nine to six; iii) for m uniform machines, using a buffer of size m, we improve the competitive ratio from 2 + ε to 2 − 1/m + ε, where ε > 0 is sufficiently small.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29(2), 459–473 (1999)
Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient scheduling problem. J. Comput. Syst. Sci. 51(3), 359–366 (1995)
Chen, X., Lan, Y., Benko, A., Dósa, G., Han, X.: Optimal algorithms for online scheduling with bounded rearrangement at the end. Theor. Comput. Sci. 412(45), 6269–6278 (2011)
Dósa, G., Epstein, L.: Online scheduling with a buffer on related machines. J. Comb. Optim. 20(2), 161–179 (2010)
Dósa, G., Epstein, L.: Preemptive online scheduling with reordering. SIAM J. Discrete Math. 25(1), 21–49 (2011)
Dósa, G., Wang, Y., Han, X., Guo, H.: Online scheduling with rearrangement on two related machines. Theor. Comput. Sci. 412(8-10), 642–653 (2011)
Englert, M., Özmen, D., Westermann, M.: The power of reordering for online minimum makespan scheduling. In: Proc. 48th Symp. Foundations of Computer Science (FOCS), pp. 603–612 (2008)
Fleischer, R., Wahl, M.: Online scheduling revisited. Journal of Scheduling 3, 343–353 (2000)
Friesen, D.K.: Tighter bounds for lpt scheduling on uniform processors. SIAM J. Comput. 16(3), 554–560 (1987)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979)
Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathematics 17(2), 416–429 (1969)
Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for scheduling on uniform processors: Using the dual approximation approach. SIAM Journal on Computing 17(3), 539–551 (1988)
Rudin III, J.F., Chandrasekaran, R.: Improved bounds for the online scheduling problem. SIAM J. Comput. 32(3), 717–735 (2003)
Karger, D.R., Phillips, S.J., Torng, E.: A better algorithm for an ancient scheduling problem. J. Algorithms 20(2), 400–430 (1996)
Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi on-line algorithms for the partition problem. Oper. Res. Lett. 21(5), 235–242 (1997)
Liu, M., Xu, Y., Chu, C., Zheng, F.: Online scheduling on two uniform machines to minimize the makespan. Theor. Comput. Sci. 410(21-23), 2099–2109 (2009)
Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migration. Math. Oper. Res. 34(2), 481–498 (2009)
Tan, Z., Yu, S.: Online scheduling with reassignment. Oper. Res. Lett. 36(2), 250–254 (2008)
Zhang, G.: A simple semi on-line algorithm for p2//c max with a buffer. Information Processing Letters 61, 145–148 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lan, Y., Chen, X., Ding, N., Dósa, G., Han, X. (2012). Online Minimum Makespan Scheduling with a Buffer. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 7285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29700-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-29700-7_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29699-4
Online ISBN: 978-3-642-29700-7
eBook Packages: Computer ScienceComputer Science (R0)