Abstract
We propose a visualization technique for summarizing contents of document streams, such as news or scientific archives. The content of streaming documents change over time and so do themes the documents are about. Topic evolution is a relatively new research subject that encompasses the unsupervised discovery of thematic subjects in a document collection and the adaptation of these subjects as new documents arrive. While many powerful topic evolution methods exist, the combination of learning and visualization of the evolving topics has been less explored, although it is indispensable for understanding a dynamic document collection.
We propose Topic Table, a visualization technique that builds upon topic modeling for deriving a condensed representation of a document collection. Topic Table captures important and intuitively comprehensible aspects of a topic over time: the importance of the topic within the collection, the words characterizing this topic, the semantic changes of a topic from one timepoint to the next. As an example, we visualize content of the NIPS proceedings from 1987 to 1999.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
AlSumait, L., Barbara, D., Domeniconi, C.: On-line LDA: adaptive topic models for mining text streams with applications to topic detection and tracking. In: ICDM (2008)
Blei, D., Lafferty, J.: Dynamic topic models. In: ICML (2006)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Boyd-Graber, J., Chang, J., Gerrish, S., Wang, C., Blei, D.: Reading tea leaves: How humans interpret topic models. In: Neural Information Processing Systems, NIPS (2009)
Chou, T.-C., Chen, M.C.: Using incremental PLSI for threshold-resilient online event analysis. IEEE Trans. on Knowl. and Data Eng. 20(3), 289–299 (2008)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 39(1), 1–38 (1977)
Ferlez, J., Faloutsos, C., Leskovec, J., Mladenic, D., Grobelnik, M.: Monitoring network evolution using MDL. In: Proceedings of IEEE Int. Conf. on Data Engineering (ICDE 2008). IEEE (2008)
Gohr, A., Hinneburg, A., Schult, R., Spiliopoulou, M.: Topic evolution in a stream of documents. In: SIAM Data Mining Conf. (SDM 2009), Reno, NV, pp. 378–385 (April-May 2009)
Gohr, A., Spiliopoulou, M., Hinneburg, A.: Visually summarizing the evolution of documents under a social tag. In: International Conf. on Knowledge Discovery and Information Retrieval (KDIR 2010), Valencia, Spain, pp. 85–94. SciTePress Digital Library (October 2010)
Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams: Theory and practice. IEEE Trans. of Knowlende and Data Eng. 15(3), 515–528 (2003)
Havre, S., Hetzler, E., Whitney, P., Nowell, L.: ThemeRiver: Visualizing thematic changes in large document collections. IEEE Trans. Visualization and Computer Graphics 8(1), 9–20 (2002)
Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 42(1), 177–196 (2001)
Ipeirotis, P., Ntoulas, A., Cho, J., Gravano, L.: Modeling and managing content changes in text databases. In: Proceedings of the IEEE Int. Conf. on Data Engineering, ICDE 2005 (2005)
Jin, W., Srihari, R.K., Ho, H.H., Wu, X.: Improving knowledge discovery in document collections through combining text retrieval and link analysis techniques. In: Proceedings of the 2007 Seventh IEEE International Conference on Data Mining, pp. 193–202. IEEE Computer Society, Washington, DC, USA (2007)
Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 497–506. ACM, New York (2009)
Mei, Q., Shen, X., Zhai, C.: Automatic labeling of multinomial topic models. In: KDD, pp. 490–499 (2007)
Mei, Q., Zhai, C.: Discovering evolutionary theme patterns from text: an exploration of temporal text mining. In: SIGKDD, pp. 198–207. ACM, New York (2005)
Newman, D., Baldwin, T., Cavedon, L., Huang, E., Karimi, S., Martinez, D., Scholer, F., Zobel, J.: Visualizing search results and document collections using topic maps. Web Semantics: Science, Services and Agents on the World Wide Web 8(2-3), 169–175 (2010); Bridging the Gap–Data Mining and Social Network Analysis for Integrating Semantic Web and Web 2.0; The Future of Knowledge Dissemination: The Elsevier Grand Challenge for the Life Sciences
Cleveland, W.S.: The Elements of Graphing Data. Hobart Press, Summit (1985/1994)
Wang, C., Blei, D., Heckerman, D.: Continuous Time Dynamic Topic Models. In: Proceedings of ICML (2008)
Wang, X., McCallum, A.: Topics over time: a non-markov continuous-time model of topical trends. In: SIGKDD, pp. 424–433. ACM (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gohr, A., Spiliopoulou, M., Hinneburg, A. (2013). Visually Summarizing Semantic Evolution in Document Streams with Topic Table. In: Fred, A., Dietz, J.L.G., Liu, K., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2010. Communications in Computer and Information Science, vol 272. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29764-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-29764-9_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29763-2
Online ISBN: 978-3-642-29764-9
eBook Packages: Computer ScienceComputer Science (R0)