Abstract
Traditional (Web) link analysis focuses on statistical analysis of links in order to identify “influencial” or “authorative” Web pages like it is done in PageRank, HITS and their variants [10]. Although these techniques are still considered as the backbone of many search engines, the analysis of usage data has gained high importance during recent years [12]. With the arrival of linked data (LD), in particular Linked Open Data (LOD), new information relating to what actually connects different vertices is available. This information can be leveraged in order to develop new techniques that efficiently combine linked data analysis with personalization for identifying not only relevant, but also diverse and even missing information.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17, 734–749 (2005)
Cantador, I., Bellogín, A., Castells, P.: Ontology-based personalised and context-aware recommendations of news items. In: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2008, vol. 1, pp. 562–565. IEEE Computer Society, Washington, DC (2008)
Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd ws. on information heterogeneity and fusion in recommender systems (hetrec 2011). In: Proc. of the 5th ACM Conf. on Recommender Systems, RecSys 2011. ACM, New York (2011)
Cosley, D., Frankowski, D., Terveen, L., Riedl, J.: SuggestBot: Using Intelligent Task Routing to Help People Find Work in Wikipedia. In: Human-Computer Interaction (2007)
Dengel, A.: Semantische suche. In: Dengel, A. (ed.) Semantische Technologien, pp. 231–256. Spektrum Akademischer Verlag (2012)
Fernández-Tobías, I., Cantador, I., Kaminskas, M., Ricci, F.: A generic semantic-based framework for cross-domain recommendation. In: Proceedings of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec 2011 (2011)
Heitmann, B., Hayes, C.: Using Linked Data to Build Open, Collaborative Recommender Systems. Artificial Intelligence (2010)
Huang, E., Kim, H.J.: Task Recommendation on Wikipedia. Data Processing (2010)
Murakami, T., Mori, K., Orihara, R.: Metrics for Evaluating the Serendipity of Recommendation Lists. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007. LNCS (LNAI), vol. 4914, pp. 40–46. Springer, Heidelberg (2008)
Ng, A.Y., Zheng, A.X., Jordan, M.I.: Stable Algorithms for Link Analysis. Machine Learning, 267–275 (2001)
Oren, E., Gerke, S., Decker, S.: Simple Algorithms for Predicate Suggestions Using Similarity and Co-occurrence. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 160–174. Springer, Heidelberg (2007)
Pariser, E.: The filter bubble: what the Internet is hiding from you. Viking, London (2011)
Passant, A.: dbrec — Music Recommendations Using DBpedia. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010)
Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, WWW 2001, pp. 285–295. ACM, New York (2001)
Wang, Y.: Semantically-Enhanced Recommendations in Cultural Heritage. PhD thesis, Technische Universiteit Eindhoven (2011)
Wikipedia. Modelling wikipedia’s growth, http://en.wikipedia.org/wiki/Wikipedia:Modelling_Wikipedia's_growth (online accessed March 12, 2012)
Zhang, H., Fu, L., Wang, H., Zhu, H., Wang, Y., Yu, Y.: Eachwiki: Suggest to be an easy-to-edit wiki interface for everyone. In: Semantic Web Challenge (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Thalhammer, A. (2012). Leveraging Linked Data Analysis for Semantic Recommender Systems. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds) The Semantic Web: Research and Applications. ESWC 2012. Lecture Notes in Computer Science, vol 7295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30284-8_64
Download citation
DOI: https://doi.org/10.1007/978-3-642-30284-8_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30283-1
Online ISBN: 978-3-642-30284-8
eBook Packages: Computer ScienceComputer Science (R0)