Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Welch Bound for Bandlimited and Timelimited Signals

  • Conference paper
Sequences and Their Applications – SETA 2012 (SETA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7280))

Included in the following conference series:

  • 1173 Accesses

Abstract

Synchronisation must be established in any communication systems. In multicarrier communications, time and frequency offsets are taken into account. We use cross-ambiguity function to evaluate synchronisation performance and the interference in a CDMA system with such two-dimensional offsets. Welch bound for one dimensional and discrete time cross correlation function is extended to the one for two dimensional and continuous time cross ambiguity functions. This bound is compared with an ambiguity function for continuous time signal generated from discrete time signal with rectangular chip waveforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. de Bruijn, N.G.: Uncertainty principles in Fourier analysis. In: Shisha, O. (ed.) Inequalities, pp. 57–71. Academic Press, New York (1967)

    Google Scholar 

  2. Hlawatsch, F., Boudreaux-Bartels, G.: Linear and quadratic time-frequency signal representations. IEEE Signal Processing Mag. 9(2), 21–67 (1992)

    Article  Google Scholar 

  3. Welch, L.R.: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inform. Theory 20, 397–399 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis, and uncertainty-I. Bell Syst. Tech. J. 40(1), 43–63 (1961)

    MathSciNet  MATH  Google Scholar 

  5. Slepian, D.: On bandwidth. Proc. IEEE 64, 292–300 (1976)

    Article  MathSciNet  Google Scholar 

  6. Kohda, T., Jitsumatsu, Y., Fujino, K., Aihara, K.: Frequency division (FD)-based CDMA system which permits frequency offset. In: Proc. of 2010 Int. Sympo. on Spread Spectrum Techniques and Applications, Taichung, Taiwan, pp. 61–66 (October 2010)

    Google Scholar 

  7. Hirt, W., Massey, J.L.: Capacity of the discrete-time Gaussian channel with intersymbol interference  34(3), 380–388 (May 1988)

    Google Scholar 

  8. Cho, J.H., Gao, W.: Continuous-time equivalents of Welch bound equality sequences. IEEE Trans. Inform. Theory 51(9), 3176–3185 (2005)

    Article  MathSciNet  Google Scholar 

  9. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V - the discrete case. Bell Syst. Tech. J. 57, 1371–1430 (1978)

    MATH  Google Scholar 

  10. Pei, S.-C., Ding, J.-J.: Discrete-to-discrete prolate spheroidal wave functions and finite duration discrete fractional fourier transform. In: EUSIPCO 2007, pp. 2244–2248 (2007)

    Google Scholar 

  11. Pursley, M.B.: Performance evaluation for phase-coded SS multiple-access communication-part-I: system analysis. IEEE Trans. Commun. 25(8), 795–799 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jitsumatsu, Y., Kohda, T.: Chip-Asynchronous Version of Welch Bound: Gaussian Pulse Improves BER Performance. In: Gong, G., Helleseth, T., Song, H.-Y., Yang, K. (eds.) SETA 2006. LNCS, vol. 4086, pp. 351–363. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Kohda, T.: Information sources using chaotic dynamics. Proc. IEEE 90(5), 641–661 (2002)

    Article  Google Scholar 

  14. Mow, W.H.: On the bounds on odd correlation of sequences. IEEE Trans. Inform. Theory 40(3), 954–955 (1994)

    Article  MATH  Google Scholar 

  15. Grünbaum, F.A.: Toeplitz matrices commuting with tridiagonal matrices. J. Linear Alg. and Appl. 40, 25–36 (1981)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jitsumatsu, Y., Kohda, T., Aihara, K. (2012). Welch Bound for Bandlimited and Timelimited Signals. In: Helleseth, T., Jedwab, J. (eds) Sequences and Their Applications – SETA 2012. SETA 2012. Lecture Notes in Computer Science, vol 7280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30615-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30615-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30614-3

  • Online ISBN: 978-3-642-30615-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics