Abstract
Synchronisation must be established in any communication systems. In multicarrier communications, time and frequency offsets are taken into account. We use cross-ambiguity function to evaluate synchronisation performance and the interference in a CDMA system with such two-dimensional offsets. Welch bound for one dimensional and discrete time cross correlation function is extended to the one for two dimensional and continuous time cross ambiguity functions. This bound is compared with an ambiguity function for continuous time signal generated from discrete time signal with rectangular chip waveforms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
de Bruijn, N.G.: Uncertainty principles in Fourier analysis. In: Shisha, O. (ed.) Inequalities, pp. 57–71. Academic Press, New York (1967)
Hlawatsch, F., Boudreaux-Bartels, G.: Linear and quadratic time-frequency signal representations. IEEE Signal Processing Mag. 9(2), 21–67 (1992)
Welch, L.R.: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inform. Theory 20, 397–399 (1974)
Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis, and uncertainty-I. Bell Syst. Tech. J. 40(1), 43–63 (1961)
Slepian, D.: On bandwidth. Proc. IEEE 64, 292–300 (1976)
Kohda, T., Jitsumatsu, Y., Fujino, K., Aihara, K.: Frequency division (FD)-based CDMA system which permits frequency offset. In: Proc. of 2010 Int. Sympo. on Spread Spectrum Techniques and Applications, Taichung, Taiwan, pp. 61–66 (October 2010)
Hirt, W., Massey, J.L.: Capacity of the discrete-time Gaussian channel with intersymbol interference 34(3), 380–388 (May 1988)
Cho, J.H., Gao, W.: Continuous-time equivalents of Welch bound equality sequences. IEEE Trans. Inform. Theory 51(9), 3176–3185 (2005)
Slepian, D.: Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V - the discrete case. Bell Syst. Tech. J. 57, 1371–1430 (1978)
Pei, S.-C., Ding, J.-J.: Discrete-to-discrete prolate spheroidal wave functions and finite duration discrete fractional fourier transform. In: EUSIPCO 2007, pp. 2244–2248 (2007)
Pursley, M.B.: Performance evaluation for phase-coded SS multiple-access communication-part-I: system analysis. IEEE Trans. Commun. 25(8), 795–799 (1977)
Jitsumatsu, Y., Kohda, T.: Chip-Asynchronous Version of Welch Bound: Gaussian Pulse Improves BER Performance. In: Gong, G., Helleseth, T., Song, H.-Y., Yang, K. (eds.) SETA 2006. LNCS, vol. 4086, pp. 351–363. Springer, Heidelberg (2006)
Kohda, T.: Information sources using chaotic dynamics. Proc. IEEE 90(5), 641–661 (2002)
Mow, W.H.: On the bounds on odd correlation of sequences. IEEE Trans. Inform. Theory 40(3), 954–955 (1994)
Grünbaum, F.A.: Toeplitz matrices commuting with tridiagonal matrices. J. Linear Alg. and Appl. 40, 25–36 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jitsumatsu, Y., Kohda, T., Aihara, K. (2012). Welch Bound for Bandlimited and Timelimited Signals. In: Helleseth, T., Jedwab, J. (eds) Sequences and Their Applications – SETA 2012. SETA 2012. Lecture Notes in Computer Science, vol 7280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30615-0_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-30615-0_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30614-3
Online ISBN: 978-3-642-30615-0
eBook Packages: Computer ScienceComputer Science (R0)