Abstract
Physically Unclonable Functions (PUFs) are key tools in the construction of lightweight authentication and key exchange protocols. So far, all existing PUF-based authentication protocols follow the same paradigm: A resource-constrained prover, holding a PUF, wants to authenticate to a resource-rich verifier, who has access to a database of pre-measured PUF challenge-response pairs (CRPs). In this paper we consider application scenarios where all previous PUF-based authentication schemes fail to work: The verifier is resource-constrained (and holds a PUF), while the prover is resource-rich (and holds a CRP-database). We construct the first and efficient PUF-based authentication protocol for this setting, which we call converse PUF-based authentication. We provide an extensive security analysis against passive adversaries, show that a minor modification also allows for authenticated key exchange and propose a concrete instantiation using controlled Arbiter PUFs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., Tuyls, P.: Memory Leakage-Resilient Encryption Based on Physically Unclonable Functions. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 685–702. Springer, Heidelberg (2009)
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM (1993)
Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient Helper Data Key Extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)
Bringer, J., Chabanne, H., Icart, T.: On Physical Obfuscation of Cryptographic Algorithms. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 88–103. Springer, Heidelberg (2009)
Das, A., Kocabaş, Ü., Sadeghi, A.-R., Verbauwhede, I.: PUF-based Secure Test Wrapper Design for Cryptographic SoC Testing. In: Design, Automation and Test in Europe (DATE). IEEE (2012)
Dodis, Y., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)
Eichhorn, I., Koeberl, P., van der Leest, V.: Logically reconfigurable PUFs: Memory-based secure key storage. In: ACM Workshop on Scalable Trusted Computing (ACM STC), pp. 59–64. ACM, New York (2011)
Gassend, B.: Physical Random Functions. Master’s thesis, MIT, MA, USA (January 2003)
Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random functions. In: Computer Security Applications Conference (ACSAC), pp. 149–160. IEEE (2002)
Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random functions. In: Computer Security Applications Conference (ACSAC), pp. 149–160. IEEE (2002)
Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. In: Proceedings of the 9th ACM Conference on Computer and Communications Security (CCS 2002), pp. 148–160. ACM (2002)
Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. In: ACM Conference on Computer and Communications Security (ACM CCS), pp. 148–160. ACM, New York (2002)
Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)
Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: Brand and IP protection with physical unclonable functions. In: IEEE International Symposium on Circuits and Systems (ISCAS) 2008, pp. 3186–3189. IEEE ( May 2008)
Holcomb, D.E., Burleson, W.P., Fu, K.: Initial SRAM state as a fingerprint and source of true random numbers for RFID tags. In: Conference on RFID Security 2007, Malaga, Spain, July 11-13 (2007)
Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.-J., Tuyls, P.: Extended abstract: The butterfly PUF protecting IP on every FPGA. In: Workshop on Hardware-Oriented Security (HOST), pp. 67–70. IEEE (June 2008)
Lee, J.W., Lim, D., Gassend, B., Suh, E.G., van Dijk, M., Devadas, S.: A technique to build a secret key in integrated circuits for identification and authentication applications. In: Symposium on VLSI Circuits, pp. 176–179. IEEE (June 2004)
Lim, D., Lee, J.W., Gassend, B., Suh, E.G., van Dijk, M., Devadas, S.: Extracting secret keys from integrated circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 13(10), 1200–1205 (2005)
Lin, L., Holcomb, D., Krishnappa, D.K., Shabadi, P., Burleson, W.: Low-power sub-threshold design of secure physical unclonable functions. In: International Symposium on Low-Power Electronics and Design (ISLPED), pp. 43–48. IEEE (August 2010)
Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfigurable devices (November 2008)
Maes, R., Verbauwhede, I.: Physically unclonable functions: A study on the state of the art and future research directions. In: Towards Hardware-Intrinsic Security (2010)
Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A large scale characterization of RO-PUF. In: International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 94–99. IEEE (June 2010)
Öztürk, E., Hammouri, G., Sunar, B.: Towards robust low cost authentication for pervasive devices. In: International Conference on Pervasive Computing and Communications (PerCom), pp. 170–178. IEEE, Washington, DC (2008)
Ranasinghe, D.C., Engels, D.W., Cole, P.H.: Security and privacy: Modest proposals for Low-Cost RFID systems. In: Auto-ID Labs Research Workshop (September 2004)
Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling attacks on physical unclonable functions. In: ACM Conference on Computer and Communications Security (ACM CCS), pp. 237–249. ACM, New York (2010)
Sadeghi, A.-R., Visconti, I., Wachsmann, C.: Enhancing RFID security and privacy by physically unclonable functions. In: Towards Hardware-Intrinsic Security. Information Security and Cryptography, pp. 281–305. Springer, Heidelberg (2010)
Schulz, S., Sadeghi, A.-R., Wachsmann, C.: Short paper: Lightweight remote attestation using physical functions. In: Proceedings of the Fourth ACM Conference on Wireless Network Security (ACM WiSec), pp. 109–114. ACM, New York (2011)
Su, Y., Holleman, J., Otis, B.P.: A digital 1.6 pJ/bit chip identification circuit using process variations. IEEE Journal of Solid-State Circuits 43(1), 69–77 (2008)
Suh, E.G., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: ACM/IEEE Design Automation Conference (DAC), pp. 9–14. IEEE (June 2007)
Tuyls, P., Batina, L.: RFID-Tags for Anti-counterfeiting. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)
Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.: Read-Proof Hardware from Protective Coatings. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)
van der Leest, V., Schrijen, G.-J., Handschuh, H., Tuyls, P.: Hardware intrinsic security from D flip-flops. In: ACM Workshop on Scalable Trusted Computing (ACM STC), pp. 53–62. ACM, New York (2010)
Škorić, B., Tuyls, P., Ophey, W.: Robust Key Extraction from Physical Uncloneable Functions. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 407–422. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kocabaş, Ü., Peter, A., Katzenbeisser, S., Sadeghi, AR. (2012). Converse PUF-Based Authentication. In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds) Trust and Trustworthy Computing. Trust 2012. Lecture Notes in Computer Science, vol 7344. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30921-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-30921-2_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30920-5
Online ISBN: 978-3-642-30921-2
eBook Packages: Computer ScienceComputer Science (R0)