Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Artifical Images for Evaluation of Segmentation Results: Bright Field Images of Living Cells

  • Conference paper
Information Technologies in Biomedicine

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7339))

Abstract

The automated image analysis is a powerful methodology for quantification microscopic images of living cells. But the proper and suitable indication of cells’ body in various kinds of microscopic images of cells is still not easy to perform. In this paper the methodology how to construct artificial images simulating bright field microscopic images is introduced. Using the adjusted and simplified version of software SIMCEP, prepared by Lehmussola and coworkers, proposed methodology is implemented and validated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alberts, B., Bray, D., Lewis, J., Raf, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell, 3rd edn. Garland Publishing Inc., New York (1994)

    Google Scholar 

  2. Altman, D.G., Bland, J.M.: Diagnostic Tests. 1: Sensitivity and Specificity. British Medical Journal 11 (1994)

    Google Scholar 

  3. Buzanska, L., Jurga, M., Stachowiak, E.K., Stachowiak, M.K., Domanska-Janik, K.: Stem Cell and Development, vol. 15, pp. 391–406 (2006)

    Google Scholar 

  4. Buzanska, L., Machaj, E.K., Zabłocka, B., Podja, Z., Domanska-Janik, K.: Human cord blood-derived cells attain neuronal and glial features in vitro. J. Cell Sci. 115, 2131–2138 (2002)

    PubMed  CAS  Google Scholar 

  5. Boezeman, B., Raymakers, R., Vierwinden, G., Linssen, P.: Automatic analysis of growth onset, growth rate and colony size of individual bone marrow progenitors. Cytometry 28, 305–310 (1997)

    Article  PubMed  CAS  Google Scholar 

  6. Czajkowska, J., Badura, P., Pietka, E.: 4D Segmentation of Ewing’s Sarcoma in MR Images. In: Piętka, E., Kawa, J. (eds.) Information Technologies in Biomedicine. AISC, vol. 69, pp. 91–100. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Czajkowska, J., Pietka, E., Kieltyka, A.: Multilevel Segmentation of Ewing’s Sarcoma Tumours in MR Images. Int. J. of Computer Assisted Radiology and Surgery 5, 344–345 (2010)

    Google Scholar 

  8. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  9. Hoppe, A., Korzynska, A., Wertheim, D.: A computer system for the analysis of neutrophil movement. Med. Biol. Eng. Comput. 37, 1000–1001 (1999)

    Article  Google Scholar 

  10. Iwanowski, M., Korzynska, A.: Detection of the Area Covered by Neural Stem Cells in Cultures Using Textural Segmentation and Morphological Watershed. In: Kurzynski, M., Wozniak, M. (eds.) Computer Recognition Systems 3. AISC, vol. 57, pp. 543–557. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Iwanowski, M., Korzyńska, A.: Segmentation of Moving Cells in Bright Field and Epi-Fluorescent Microscopic Image Sequences. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010. LNCS, vol. 6374, pp. 401–410. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Kaufman, H., Tekalp, M.: Survey of estimation techniques in image restoration. IEEE Contr. Syst. 11(1), 16–24 (1991)

    Article  Google Scholar 

  13. Korzynska, A.: Automatic Counting of Neural Stem Cells Growing in Cultures. In: Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A. (eds.) Computer Recognition Systems 2. ASC, vol. 45, pp. 604–612. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Korzynska, A., Iwanowski, M., Neuman, U., Dobrowolska, E., Hoser, P.: Comparison of the Methods of Microscopic Image Segmentation. In: Dössel, O., Schlegel, W.C. (eds.) WC 2009. IFMBE Proc., vol. 25/IV, pp. 425–428. Springer, Heidelberg (2009)

    Google Scholar 

  15. Korzynska, A., Jurga, M., Domanska-Janik, K., Strojny, W., Wloskowicz, D.: Analysis of Stem Cell Clonal Growth. In: Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A. (eds.) Computer Recognition Systems. ASC, vol. 1, pp. 577–584. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Korzynska, A., Strojny, W., Hoppe, A., Wertheim, D., Hoser, P.: Segmentation of microscope images of living cells. Pattern. Anal. Appl. 10, 301–319 (2007)

    Article  Google Scholar 

  17. Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., Yli-Harja, O.: Computational Framework for Simulating Fluorescece Microscope Images With Cell Population. IEEE Tran. on Med. Imaging 26(7) (2007)

    Google Scholar 

  18. Lehmussola, A., Selinummi, J., Ruusuvuori, P., Niemisto, A., Yli-Harja, O.: Simulating fluorescent microscope images of cell populations. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China (2005)

    Google Scholar 

  19. Lewinska, D., Bukowski, J., Kozuchowski, M., Kinasiewicz, A., Werynsk, A.: Electrostatic microencapsulation of living cells. Biocybern. Biomed. Eng. 28, 69–84 (2008)

    Google Scholar 

  20. Liao, Q., Deng, Y.: An accurate segmentation method for white blood cell images. In: Proc. Int. Symp. on Biomedical Imaging, pp. 245–248 (2002)

    Google Scholar 

  21. Markiewcz, T., Osowski, S.: Morphological operations for blood cells extraction from the image of the bone marrow smear. Prz. Elektrotechniczn. 84, 24–26 (2008)

    Google Scholar 

  22. Markiewicz, T., Wisniewsk, P., Osowski, S., Patera, J., Kołowski, W., Koktysz, R.: Comparative analysis of methods for accurate recognition of cells through nuclei staining of KI-67 in neuroblastoma and estrogen/progesteronestatus staining in breast cancer. Anal. Quant. Cytol. Histol. 31, 49–62 (2009)

    PubMed  Google Scholar 

  23. Neuman, U., Korzynska, A., Lopez, C., Lejeun, M.: Segmentation of Stained Lymphoma Tissue Section Images. In: Pieta, E., Kawa, J. (eds.) Information Technology in Biomedicine 2. ASC, vol. 69, pp. 101–113. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Neuman, U., Korzynska, A., Lopez, C., Leujene, M., Bosch, R.: Intensity correction of the immunohistochmically stained tessue sections images influence on results of segmentation accurence. In: TPO 2010 Conference Proceedings, pp. 35–40 (2010) (in polish)

    Google Scholar 

  25. Neuman, U., Korzynska, A., Lopez, C., Leujene, M., Bosch, R.: Equalisation of archival microscopic images from immunohistochmically stained tissue sections. Accepted for Biocyb. and Biomed. Eng. (2012)

    Google Scholar 

  26. Ongun, G., Halici, U., Leblebicioglu, K., Atalay, V., Beksac, M., Beksak, S.: An automated differential blood count system. P. Ann. Int. IEEE EMBS 3, 2583–2586 (2001)

    Google Scholar 

  27. Perlin, K.: An image synthetizer. Comput. Graph. 19, 287–296 (1985)

    Article  Google Scholar 

  28. Pham, D.L., Xu, C., Prince, J.L.: A survey of current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 315–338 (2000)

    Article  PubMed  CAS  Google Scholar 

  29. Proffitt, R., Tran, J.V., Reynolds, C.P.: A fluorescence digital image microscopy system for quantifying relative cell numbers in tissue culture plates. Cytometry 24, 204–213 (1996)

    Article  PubMed  CAS  Google Scholar 

  30. Russ, J.C.: Image Processing Handbook, 4th edn. CRC Press, Tokyo (2002)

    Google Scholar 

  31. Selinummi, J., Ruusuvuori, P., Podolsky, P., Ozinsky, I.A., Gold, E., Yli-Harja, O., Aderem, A., Shmulevich, I.: Bright field microscopy as an alternative to whole cell fluorescence in automated analysis of macrophage images. PLoS One 4(10), e7497 (2009)

    Google Scholar 

  32. Solorzano, C.O., Rodgirguez, E.G., Jone, S.A., Pinkel, J., Gray, J.W.: Segentation of Confocal Microscope Images of Cell Nuclei in Thick Tissue Section. J. Microsc. 193, 212–226 (1999)

    Article  Google Scholar 

  33. http://www.cs.tut.fi/csb/simcep

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Korzynska, A., Iwanowski, M. (2012). Artifical Images for Evaluation of Segmentation Results: Bright Field Images of Living Cells. In: Piętka, E., Kawa, J. (eds) Information Technologies in Biomedicine. Lecture Notes in Computer Science(), vol 7339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31196-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31196-3_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31195-6

  • Online ISBN: 978-3-642-31196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics