Abstract
Existing solutions for answering SPARQL queries in a shared-nothing environment using MapReduce failed to fully explore the substantial scalability and parallelism of the computing framework. In this paper, we propose a cost model based RDF join processing solution using MapReduce to minimize the query responding time as much as possible. After transforming a SPARQL query into a sequence of MapReduce jobs, we propose a novel index structure, called All Possible Join tree (APJ-tree), to reduce the searching space for the optimal execution plan of a set of MapReduce jobs. To speed up the join processing, we employ hybrid join and bloom filter for performance optimization. Extensive experiments on real data sets proved the effectiveness of our cost model. Our solution has as much as an order of magnitude time saving compared with the state of art solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Husain, M.F., et al.: Data intensive query processing for large RDF graphs using cloud computing tools. In: CLOUD 2010 (2010)
Farhan Husain, M., Doshi, P., Khan, L., Thuraisingham, B.: Storage and Retrieval of Large RDF Graph Using Hadoop and MapReduce. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp. 680–686. Springer, Heidelberg (2009)
Myung, J., et al.: Sparql basic graph pattern processing with iterative mapreduce. In: MDAC 2010 (2010)
Tanimura, Y., et al.: Extensions to the pig data processing platform for scalable RDF data processing using hadoop. In: 22nd International Conference on Data Engineering Workshops, pp. 251–256 (2010)
Chebotko, A., Atay, M., Lu, S., Fotouhi, F.: Relational Nested Optional Join for Efficient Semantic Web Query Processing. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 428–439. Springer, Heidelberg (2007)
Jaynes, E.T.: Probability theory: The logic of science. Cambridge University Press, Cambridge (2003)
Zhang, X., et al.: Towards efficient join processing over large RDF graph using mapreduce. Technical Report (2011)
Blanas, S., et al.: A comparison of join algorithms for log processing in mapreduce. In: SIGMOD 2010 (2010)
Thomas, N., et al.: The RDF-3x engine for scalable management of RDF data. VLDB J. 19(1), 91–113 (2010)
Weiss, C., et al.: Hexastore: sextuple indexing for semantic web data management. Proc. VLDB Endow. (2008)
Neumann, T., et al.: Scalable join processing on very large RDF graphs. In: SIGMOD Conference, pp. 627–640 (2009)
Abadi, D.J., et al.: Sw-store: a vertically partitioned dbms for semantic web data management. The VLDB Journal 18, 385–406 (2009)
Newman, A., et al.: A scale-out RDF molecule store for distributed processing of biomedical data. In: Semantic Web for Health Care and Life Sciences Workshop (2008)
Newman, A., et al.: Scalable semantics - the silver lining of cloud computing. In: ESCIENCE 2008 (2008)
Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable Distributed Reasoning Using MapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 634–649. Springer, Heidelberg (2009)
McGlothlin, J.P., et al.: Rdfkb: efficient support for RDF inference queries and knowledge management. In: IDEAS 2009 (2009)
Afrati, F.N., et al.: Optimizing joins in a map-reduce environment. In: EDBT 2010 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, X., Chen, L., Wang, M. (2012). Towards Efficient Join Processing over Large RDF Graph Using MapReduce. In: Ailamaki, A., Bowers, S. (eds) Scientific and Statistical Database Management. SSDBM 2012. Lecture Notes in Computer Science, vol 7338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31235-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-31235-9_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31234-2
Online ISBN: 978-3-642-31235-9
eBook Packages: Computer ScienceComputer Science (R0)