Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards Efficient Join Processing over Large RDF Graph Using MapReduce

  • Conference paper
Scientific and Statistical Database Management (SSDBM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7338))

Abstract

Existing solutions for answering SPARQL queries in a shared-nothing environment using MapReduce failed to fully explore the substantial scalability and parallelism of the computing framework. In this paper, we propose a cost model based RDF join processing solution using MapReduce to minimize the query responding time as much as possible. After transforming a SPARQL query into a sequence of MapReduce jobs, we propose a novel index structure, called All Possible Join tree (APJ-tree), to reduce the searching space for the optimal execution plan of a set of MapReduce jobs. To speed up the join processing, we employ hybrid join and bloom filter for performance optimization. Extensive experiments on real data sets proved the effectiveness of our cost model. Our solution has as much as an order of magnitude time saving compared with the state of art solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Husain, M.F., et al.: Data intensive query processing for large RDF graphs using cloud computing tools. In: CLOUD 2010 (2010)

    Google Scholar 

  2. Farhan Husain, M., Doshi, P., Khan, L., Thuraisingham, B.: Storage and Retrieval of Large RDF Graph Using Hadoop and MapReduce. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp. 680–686. Springer, Heidelberg (2009)

    Google Scholar 

  3. Myung, J., et al.: Sparql basic graph pattern processing with iterative mapreduce. In: MDAC 2010 (2010)

    Google Scholar 

  4. Tanimura, Y., et al.: Extensions to the pig data processing platform for scalable RDF data processing using hadoop. In: 22nd International Conference on Data Engineering Workshops, pp. 251–256 (2010)

    Google Scholar 

  5. Chebotko, A., Atay, M., Lu, S., Fotouhi, F.: Relational Nested Optional Join for Efficient Semantic Web Query Processing. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 428–439. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Jaynes, E.T.: Probability theory: The logic of science. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  7. Zhang, X., et al.: Towards efficient join processing over large RDF graph using mapreduce. Technical Report (2011)

    Google Scholar 

  8. http://aws.amazon.com/ec2/

  9. Blanas, S., et al.: A comparison of join algorithms for log processing in mapreduce. In: SIGMOD 2010 (2010)

    Google Scholar 

  10. http://hadoop.apache.org/

  11. Thomas, N., et al.: The RDF-3x engine for scalable management of RDF data. VLDB J. 19(1), 91–113 (2010)

    Article  Google Scholar 

  12. Weiss, C., et al.: Hexastore: sextuple indexing for semantic web data management. Proc. VLDB Endow. (2008)

    Google Scholar 

  13. Neumann, T., et al.: Scalable join processing on very large RDF graphs. In: SIGMOD Conference, pp. 627–640 (2009)

    Google Scholar 

  14. Abadi, D.J., et al.: Sw-store: a vertically partitioned dbms for semantic web data management. The VLDB Journal 18, 385–406 (2009)

    Article  Google Scholar 

  15. http://jena.sourceforge.net/

  16. Newman, A., et al.: A scale-out RDF molecule store for distributed processing of biomedical data. In: Semantic Web for Health Care and Life Sciences Workshop (2008)

    Google Scholar 

  17. Newman, A., et al.: Scalable semantics - the silver lining of cloud computing. In: ESCIENCE 2008 (2008)

    Google Scholar 

  18. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable Distributed Reasoning Using MapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 634–649. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. McGlothlin, J.P., et al.: Rdfkb: efficient support for RDF inference queries and knowledge management. In: IDEAS 2009 (2009)

    Google Scholar 

  20. http://rdfgrid.rubyforge.org/

  21. Afrati, F.N., et al.: Optimizing joins in a map-reduce environment. In: EDBT 2010 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, X., Chen, L., Wang, M. (2012). Towards Efficient Join Processing over Large RDF Graph Using MapReduce. In: Ailamaki, A., Bowers, S. (eds) Scientific and Statistical Database Management. SSDBM 2012. Lecture Notes in Computer Science, vol 7338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31235-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31235-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31234-2

  • Online ISBN: 978-3-642-31235-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics