Abstract
The success of some recently proposed multi-strategy image quality metrics supports the hypothesis that the Human Visual System (HVS) uses multiple strategies when assessing image quality, where the effect from each strategy on the final quality prediction is conditioned on the quality level of the test image. To date, how to optimally combine multiple strategies into a final quality prediction remains an unsolved problem, especially when more than two strategies are involved. In this paper, we present a data-driven combination method based on a conditional Bayesian Mixture of Experts (BME) model. This method provides an effective way to model the interaction of a flexible number of strategies. Extensive evaluation on three publicly-available image quality databases demonstrates the potential of our method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Larson, E.C., Chandler, D.M.: Most Apparent Distortion: Full-Reference Image Quality Assessment and the Role of Strategy. J. Electron. Imaging 19(1), 11006 (2010)
Peng, P., Li, Z.N.: Incorporating Structural Edge Quality to Regularize the Structural Similarity Index (submitted for publication)
Jordan, M.I., Jacobs, R.A.: Hierarchical Mixtures of Experts and the EM Algorithm. Neural Computation, 181–214 (1994)
Bishop, C.M., Svensén, M.: Bayesian Hierarchical Mixtures of Experts. In: Nineteenth Conference on Uncertainty in Artificial Intelligence, pp. 57–64 (2003)
Sminchisescu, C., Kanaujia, A., Metaxas, D.N.: BME : Discriminative Density Propagation for Visual Tracking. IEEE Trans. Pattern Anal. Mach. Intell., 2030–2044 (2007)
Bo, L., Sminchisescu, C., Kanaujia, A., Metaxas, D.N.: Fast Algorithms for Large Scale Conditional 3D Prediction. In: CVPR(2008)
Mossavat, S.I., Amft, O., de Vries, B., Petkov, P.N., Kleijn, W.B.: A Bayesian Hierarchical Mixture of Experts Approach to Estimate Speech Quality. In: Second International Workshop on Quality of Multimedia Experience (QoMEX) (2010)
Chang, C.W., Lin, C.J.: LIBSVM: A Library for Support Vector Machines. ACM Trans. on Intell. Syst. Technol. 2(3), 27 (2011), software http://www.csie.ntu.edu.tw/~cjlin/libsvm
Ponomarenko, N., Battisti, F., Egiazarian, K., Astola, J., Lukin, V.: Metrics Performance Comparison for Color Image Database. In 4th International Workshop on Video Processing and Quality Metrics for Consumer Electronics, Scottsdale (2009)
Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: TID 2008 - A Database for Evaluation of Full-Reference Visual Quality Assessment Metrics. Advances of Modern Radioelectronics 10, 30–45 (2009)
Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: LIVE Image Quality Assessment Database Release 2, http://live.ece.utexas.edu/research/quality
Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment: From Error Measurement to Structural Similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Sheikh, H.R., Bovik, A.C.: Image Information and Visual Quality. IEEE Trans. Image Process. 15(2), 43–444 (2006)
Lin, W., Kuo, C.C.J.: Perceptual Visual Quality Metrics: A Survey. Journal of Visual Communication and Image Representation 22(4), 297–312 (2011)
Moorthy, A.K., Bovik, A.C.: Visual Quality Assessment Algorithms: What Does The Future Hold? Multimedia Tools Appl. 51(2), 675–696 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Peng, P., Li, ZN. (2012). A Mixture of Experts Approach to Multi-strategy Image Quality Assessment. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science, vol 7324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31295-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-31295-3_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31294-6
Online ISBN: 978-3-642-31295-3
eBook Packages: Computer ScienceComputer Science (R0)