Abstract
This paper presents a new algorithm to track a high number of points in a video sequence in real-time. We propose a fast keypoint detector, used to create new particles, and an associated multiscale descriptor (feature) used to match the particles from one frame to the next. The tracking algorithm updates for each particle a series of appearance and kinematic states, that are temporally filtered. It is robust to hand held camera accelerations thanks to a coarse-to-fine dominant movement estimation. Each step is designed to reach the maximal level of data parallelism, to target the most common parallel platforms. Using graphics processing unit, our current implementation handles 10 000 points per frame at 55 frames-per-second on 640 ×480 videos.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
d’Angelo, E., Paratte, J., Puy, G., Vandergheynst, P.: Fast TV-L1 optical flow for interactivity. In: IEEE International Conference on Image Processing (ICIP 2011), Brussels, Belgium, pp. 1925–1928 (September 2011)
Fassold, H., Rosner, J., Schallaeur, P., Bailer, W.: Realtime KLT feature point tracking for high definition video. In: Computer Graphics, Computer Vision and Mathematics (GraVisMa 2009), Plzen, Czech Republic (September 2009)
NVIDIA: Cuda toolkit, http://www.nvidia.com/cuda
Rosten, E., Drummond, T.: Machine Learning for High-Speed Corner Detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)
Sand, P., Teller, S.: Particle video: Long-range motion estimation using point trajectories. In: Computer Vision and Pattern Recognition (CVPR 2006), pp. 2195–2202, New York (June 2006)
Sinha, S.N., Frahm, J.M., Pollefeys, M., Genc, Y.: Feature tracking and matching in video using programmable graphics hardware. Machine Vision and Applications 22(1), 207–217 (2007)
Sundaram, N., Brox, T., Keutzer, K.: Dense Point Trajectories by GPU-Accelerated Large Displacement Optical Flow. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 438–451. Springer, Heidelberg (2010)
Tomasi, C., Kanade, T.: Detection and tracking of point features. Carnegie Mellon University Technical Report CMU-CS-91-132 (April 1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Garrigues, M., Manzanera, A. (2012). Real Time Semi-dense Point Tracking. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science, vol 7324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31295-3_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-31295-3_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31294-6
Online ISBN: 978-3-642-31295-3
eBook Packages: Computer ScienceComputer Science (R0)