Abstract
To monitor tumor response to neoadjuvant chemotherapy, investigators have begun to employ quantitative physiological parameters available from dynamic contrast enhanced MRI (DCE-MRI). However, most studies track the changes in these parameters obtained from the tumor region of interest (ROI) or histograms, thereby discarding all spatial information on tumor heterogeneity. In this study, we applied a nonrigid registration to longitudinal DCE-MRI data and performed a voxel-by-voxel analysis to examine the ability of early changes in parameters at the voxel level to separate pathologic complete responders (pCR) from non-responders (NR). Twenty-two patients were examined using DCE-MRI pre-, post one cycle, and at the conclusion of all neoadjuvant chemotherapy. The fast exchange regime model (FXR) was applied to both the original and registered DCE-MRI data to estimate tumor-related parameters. The results indicate that compared with the ROI analysis, the voxel-based analysis after longitudinal registration may improve the ability of DCE-MRI to separate complete responders from non-responders after one cycle of therapy when using the FXR model (p = 0.02).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cheung, Y.C., Chen, S.C., Su, M.Y., See, L.C., Hsueh, S., Chang, H.K., et al.: Monitoring the size and response of locally advanced breast cancers to neoadjuvant chemotherapy (weekly paclitaxel and epirubicin) with serial enhanced MRI. Breast Cancer Res. Treat. 78, 51–58 (2003)
Chou, C.P., Wu, M.T., Chang, H.T., Lo, Y.S., Pan, H.B., Degani, H., Furman-Haran, E.: Monitoring breast cancer response to neoadjuvant systemic chemotherapy using parametric contrast-enhanced MRI: a pilot study. Acad. Radiol. 14, 561–573 (2007)
Martincich, L., Montemurro, F., De Rosa, G., Marra, V., Ponzone, R., Cirillo, S., Gatti, M., Biglia, N., Sarotto, I., Sismondi, P., Regge, D., Aglietta, M.: Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging. Breast Cancer Res. Treat. 83, 67–76 (2004)
Wasser, K., Klein, S.K., Fink, C., Junkermann, H., Sinn, H.P., Zuna, I., Knopp, M.V., Delorme, S.: Evaluation of neoadjuvant chemotherapeutic response of breast cancer using dynamic MRI with high temporal resolution. Eur. Radiol. 13, 80–87 (2003)
Drew, P.J., Kerin, M.J., Mahapatra, T., Malone, C., Monson, J.R., Turnbull, L.W., Fox, J.N.: Evaluation of response to neoadjuvant chemoradiotherapy for locally advanced breast cancer with dynamic contrast-enhanced MRI of the breast. Eur. J. Surg. Oncol. 27, 617–620 (2001)
Abraham, D.C., Jones, R.C., Jones, S.E., Cheek, J.H., Peters, G.N., Knox, S.M., Grant, M.D., Hampe, D.W., Savino, D.A., Harms, S.E.: Evaluation of neoadjuvant chemotherapeutic response of locally advanced breast cancer by magnetic resonance imaging. Cancer 78, 91–100 (1996)
Gilles, R., Guinebretiere, J.M., Toussaint, C., Spielman, M., Rietjens, M., Petit, J.Y., Contesso, G., Masselot, J., Vanel, D.: Locally advanced breast cancer: contrast-enhanced subtraction MR imaging of response to preoperative chemotherapy. Radiology 191, 633–638 (1994)
Ah-See, M.L., Makris, A., Taylor, N.J., Harrison, M., Richman, P.I., Burcombe, R.J., Stirling, J.J., d’Arcy, J.A., Pittam, M.R., Ravichandran, D., Padhani, A.R.: Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin. Cancer Res. 14, 6580–6589 (2008)
Li, X., Dawant, B.M., Welch, E.B., Chakravarthy, A.B., Freehardt, D., Mayer, I., Kelley, M., Meszoely, I., Gore, J.C., Yankeelov, T.E.: A nonrigid registration algorithm for longitudinal breast MR images and the analysis of breast tumor response. Magn. Reson. Imaging 27, 1258–1270 (2009)
Li, X., Dawant, B.M., Welch, E.B., Chakravarthy, A.B., Xu, L., Mayer, I., Keley, M., Meszoely, I., Means-Powell, J., Gore, J.C., Yankeelov, T.E.: Validation of an algorithm for the nonrigid registration of longitudinal breast MR images using realistic phantoms. Med. Phys. 37, 2541–2552 (2010)
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16, 187–198 (1997)
Rohde, G.K., Aldroubi, A., Dawant, B.M.: The adaptive bases algorithm for intensity-based nonrigid image registration. IEEE Trans. Med. Imaging 22, 1470–1479 (2003)
Li, X., Welch, E.B., Chakravarthy, A.B., Lei, X., Arlinghaus, L.R., Farley, J., Loveless, M.E., Mayer, I., Kelley, M., Meszoely, I., Means-Powell, J., Abramson, V., Grau, A., Gore, J.C., Yankeelov, T.E.: A Novel AIF Detection Method and a Comparison of DCE-MRI Parameters Using Individual and Population Based AIFs in Human Breast Cancer. Phys. Med. Biol. 56, 5753–5769 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, X. et al. (2012). Early DCE-MRI Changes after Longitudinal Registration May Predict Breast Cancer Response to Neoadjuvant Chemotherapy. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2012. Lecture Notes in Computer Science, vol 7359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31340-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-31340-0_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31339-4
Online ISBN: 978-3-642-31340-0
eBook Packages: Computer ScienceComputer Science (R0)