Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Pattern Discovery Model for Effective Text Mining

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7376))

  • 6153 Accesses

Abstract

The quality of extracted features is the key issue to text mining due to the large number of terms, phrases, and noise. Most existing text mining methods are based on term-based approaches which extract terms from a training set for describing relevant information. However, the quality of the extracted terms in text documents may be not high because of lot of noise in text. For many years, some researchers make use of various phrases that have more semantics than single words to improve the relevance, but many experiments do not support the effective use of phrases since they have low frequency of occurrence, and include many redundant and noise phrases. In this paper, we propose a novel pattern discovery approach for text mining. This approach first discovers closed sequential patterns in text documents for identifying the most informative contents of the documents and then utilise the identified contents to extract useful features for text mining. We develop a novel fusion method based on Dempster-Shafer’s evidential reasoning which allows to combine the pieces of document to discover the knowledge (features). To evaluate the proposed approach, we adopt the feature extraction method for information filtering (IF). The experimental results conducted on Reuters Corpus Volume 1 and TREC topics confirm that the proposed approach could achieve excellent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bayardo Jr., R.: Efficiently mining long patterns from databases. ACM Sigmod Record 27, 85–93 (1998)

    Article  Google Scholar 

  2. Bi, Y., Wu, S., Wang, H., Guo, G.: Combination of evidence-based classifiers for text categorization. In: 2011 23rd IEEE International Conference on Tools with Artificial Intelligence, pp. 422–429. IEEE (2011)

    Google Scholar 

  3. Buckley, C., Salton, G., Allan, J.: The effect of adding relevance information in a relevance feedback environment. In: ACM SIGIR 17th International Conf., pp. 292–300 (1994)

    Google Scholar 

  4. Buckley, C., Voorhees, E.: Evaluating evaluation measure stability. In: 23th ACM SIGIR International Conf. on Research and Development in Information Retrieval, pp. 33–40 (2000)

    Google Scholar 

  5. Caropreso, M., Matwin, S., Sebastiani, F.: Statistical phrases in automated text categorization. Centre National de la Recherche Scientifique, Paris, France (2000)

    Google Scholar 

  6. Cheng, H., Yan, X., Han, J., Hsu, C.: Discriminative frequent pattern analysis for effective classification. In: 23rd IEEE ICDE International Conf. on Data Engineering, pp. 716–725 (2007)

    Google Scholar 

  7. Jaillet, S., Laurent, A., Teisseire, M.: Sequential patterns for text categorization. Intelligent Data Analysis 10(3), 199–214 (2006)

    Google Scholar 

  8. Joachims, T.: A probabilistic analysis of the rocchio algorithm with tfidf for text categorization. In: 14th ICML International Conf. on Machine Learning, pp. 143–151 (1997)

    Google Scholar 

  9. Joachims, T.: Text Categorization with Support Vector Machines: Learning with many Relevant Features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Lefevre, E., Colot, O., Vannoorenberghe, P.: Belief function combination and conflict management. Information Fusion 3(2), 149–162 (2002)

    Article  Google Scholar 

  11. Malik, H., Kender, J.: High quality, efficient hierarchical document clustering using closed interesting itemsets. In: 6th IEEE ICDM International Conf. on Data Mining, pp. 991–996 (2006)

    Google Scholar 

  12. Nanas, N., Vavalis, M.: A “Bag” or a “Window” of Words for Information Filtering? In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 182–193. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Rose, T., Stevenson, M., Whitehead, M.: The reuters corpus volume 1-from yesterday’s news to tomorrow’s language resources. In: 3th International Conf. on Language Resources and Evaluation, pp. 29–31 (2002)

    Google Scholar 

  14. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)

    Article  Google Scholar 

  15. Shehata, S., Karray, F., Kamel, M.: A concept-based model for enhancing text categorization. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 629–637. ACM (2007)

    Google Scholar 

  16. Smets, P.: Data fusion in the transferable belief model. In: Proceedings of the Third International Conference on Information Fusion, FUSION 2000, vol. 1, pp. PS21–PS33. IEEE (2000)

    Google Scholar 

  17. Soboroff, I., Robertson, S.: Building a filtering test collection for trec 2002. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, p. 250. ACM (2003)

    Google Scholar 

  18. Stavrianou, A., Andritsos, P., Nicoloyannis, N.: Overview and semantic issues of text mining. ACM SIGMOD Record 36(3), 23–34 (2007)

    Article  Google Scholar 

  19. Tan, A.: Text mining: The state of the art and the challenges. In: Proceedings of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced Databases, pp. 65–70 (1999)

    Google Scholar 

  20. van der Weide, T., van Bommel, P.: Measuring the incremental information value of documents. Information Sciences 176(2), 91–119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, S., Li, Y., Xu, Y.: Deploying approaches for pattern refinement in text mining. In: 6th IEEE ICDM International Conf. on Data Mining, pp. 1157–1161 (2006)

    Google Scholar 

  22. Wu, S., Li, Y., Xu, Y., Pham, B., Chen, P.: Automatic pattern-taxonomy extraction for web mining. In: 3th IEEE/WIC/ACM WI International Conf. on Web Intelligence, pp. 242–248 (2004)

    Google Scholar 

  23. Xin, D., Cheng, H., Yan, X., Han, J.: Extracting redundancy-aware top-k patterns. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 444–453. ACM (2006)

    Google Scholar 

  24. Xin, D., Han, J., Yan, X., Cheng, H.: Mining compressed frequent-pattern sets. In: Proceedings of the 31st International Conference on Very Large Databases, pp. 709–720. VLDB Endowment (2005)

    Google Scholar 

  25. Yan, X., Cheng, H., Han, J., Xin, D.: Summarizing itemset patterns: a profile-based approach. In: 11th ACM SIGKDD International Conf. on Knowledge Discovery in Data Mining, pp. 314–323 (2005)

    Google Scholar 

  26. Zaki, M.: Generating non-redundant association rules. In: 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 34–43 (2000)

    Google Scholar 

  27. Zhang, W., Yoshida, T., Tang, X.: Text classification using multi-word features. In: IEEE International Conference on Systems, Man and Cybernetics, ISIC 2007, pp. 3519–3524. IEEE (2007)

    Google Scholar 

  28. Zhong, N., Li, Y., Wu, S.: Effective pattern discovery for text mining. IEEE Transactions on Knowledge and Data Engineering, doi: http://doi.ieeecomputersociety.org/10.1109/TKDE,211

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pipanmaekaporn, L., Li, Y. (2012). A Pattern Discovery Model for Effective Text Mining. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2012. Lecture Notes in Computer Science(), vol 7376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31537-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31537-4_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31536-7

  • Online ISBN: 978-3-642-31537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics