Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stability Analysis for the Disease Free Equilibrium of a Discrete Malaria Model with Two Delays

  • Conference paper
Intelligent Computing Theories and Applications (ICIC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7390))

Included in the following conference series:

Abstract

A discrete-time model is established to show the transmission of malaria between humans and mosquitoes with the incubation periods of parasites within both human and mosquito concerned. It is proved that the disease free equilibrium of the model is globally asymptotically stable when the basic reproduction number is less than 1 by constructing appropriate Lyapunov functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ruan, S.G., Xiao, D.M., Beier, J.C.: On the Delayed Ross-Macdonald Model for Malaria Transmission. Bull. Math. Biol. 70, 1098–1114 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wu, C.Q., Jiang, Z.Y.: A Delayed Discrete Model and Control for Malaria Transmission. In: Proceedings of 4th International Conference on Bioinformatics and Biomedical Engineering. IEEE press, NewYork (2010)

    Google Scholar 

  3. World Health Organization, World Malaria Report (2008), http://malaria.who.int/wmr2008

  4. Hethcote, H.W.: The Mathematics of Infectious Disease. SIAM Review 42, 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ross, R.: The Prevention of Malaria, 2nd edn. Murray, Lodon (1911)

    Google Scholar 

  6. Macdonald, G.: The Epidemiology and Control of Malaria. Oxford University Press, London (1957)

    Google Scholar 

  7. Auger, P., et al.: The Ross-Macdonald Model in Patchy Environment. Math. Biosci. 216(2), 123–131 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. An, D., Driessche, P., Watmough, J.: Reproduction Numbers and Sub-threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  9. Orobeinikov, A., Wake, G.C.: Lyapunov Functions and Global Stability for SIR, SIRS, and SIS epidemiological models. Appl. Math. Lett. 15, 955–960 (2002)

    Article  MathSciNet  Google Scholar 

  10. Wu, Z.Y., Zhou, Y.C.: Advances in Mathematical Biology. Science Press of China, Beijing (2006) (in Chinese)

    Google Scholar 

  11. Wang, L., Wang, M.Q.: Ordinary Difference Equations. Xinjiang University Press, Urumqi (1991) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, C., Zhang, Y. (2012). Stability Analysis for the Disease Free Equilibrium of a Discrete Malaria Model with Two Delays. In: Huang, DS., Ma, J., Jo, KH., Gromiha, M.M. (eds) Intelligent Computing Theories and Applications. ICIC 2012. Lecture Notes in Computer Science(), vol 7390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31576-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31576-3_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31575-6

  • Online ISBN: 978-3-642-31576-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics