Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Label Cover Instances with Large Girth and the Hardness of Approximating Basic k-Spanner

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7391))

Included in the following conference series:

Abstract

We study the well-known Label Cover problem under the additional requirement that problem instances have large girth. We show that if the girth is some k, the problem is roughly \(2^{(\log^{1-\epsilon} n)/k}\) hard to approximate for all constant ε > 0. A similar theorem was claimed by Elkin and Peleg [ICALP 2000] as part of an attempt to prove hardness for the basic k-spanner problem, but their proof was later found to have a fundamental error. Thus we give both the first non-trivial lower bound for the problem of Label Cover with large girth as well as the first full proof of strong hardness for the basic k-spanner problem, which is both the simplest problem in graph spanners and one of the few for which super-logarithmic hardness was not known. Assuming \(NP \not\subseteq BPTIME(2^{polylog(n)})\), we show (roughly) that for every k ≥ 3 and every constant ε > 0 it is hard to approximate the basic k-spanner problem within a factor better than \(2^{(\log^{1-\epsilon} n) / k}\). This improves over the previous best lower bound of only Ω(logn)/k from [17]. Our main technique is subsampling the edges of 2-query PCPs, which allows us to reduce the degree of a PCP to be essentially equal to the soundness desired. This turns out to be enough to basically guarantee large girth.

Full version available at http://arxiv.org/abs/1203.0224

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arora, S., Lund, C.: Hardness on Approximation. In: Hochbaum, D. (ed.) Approximation Algorithms for NP-Hard Problems, ch. 10. PWS Publishing (1996)

    Google Scholar 

  3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of np. J. ACM 45(1), 70–122 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in expected o(n \(^{\mbox{2}}\)) time. ACM Transactions on Algorithms 2(4), 557–577 (2006)

    Article  MathSciNet  Google Scholar 

  6. Berman, P., Bhattacharyya, A., Makarychev, K., Raskhodnikova, S., Yaroslavtsev, G.: Improved Approximation for the Directed Spanner Problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 1–12. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.P.: Transitive-closure spanners. In: SODA 2009, pp. 932–941 (2009)

    Google Scholar 

  8. Cohen, E.: Polylog-time and near-linear work approximation scheme for undirected shortest paths. J. ACM 47(1), 132–166 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dinitz, M., Krauthgamer, R.: Directed spanners via flow-based linear programs. In: STOC 2011, pp. 323–332 (2011)

    Google Scholar 

  10. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  11. Elkin, M., Peleg, D.: Strong Inapproximability of the Basic k-Spanner Problem. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 636–647. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Elkin, M., Peleg, D.: Approximating k-spanner problems for k > 2. Theor. Comput. Sci. 337(1-3), 249–277 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elkin, M., Peleg, D.: The hardness of approximating spanner problems. Theory Comput. Syst. 41(4), 691–729 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the data-stream model. SIAM J. Comput. 38(5), 1709–1727 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldreich, O., Sudan, M.: Locally testable codes and pcps of almost-linear length. J. ACM 53, 558–655 (2006)

    Article  MathSciNet  Google Scholar 

  16. Khot, S.: On the unique games conjecture. In: FOCS 2005, p. 3 (2005)

    Google Scholar 

  17. Kortsarz, G.: On the hardness of approximating spanners. Algorithmica 1444 (1998)

    Google Scholar 

  18. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. Journal of Algorithms 17(2), 222–236 (1994)

    Article  MathSciNet  Google Scholar 

  19. Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the complete graphs and almost as cheap as minimum spanning trees. Algorithmica 8(3), 251–256 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peleg, D., Schaffer, A.: Graph spanners. J. Graph Theory 13, 99–116 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Comput. 18(4), 740–747 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J. ACM 36(3), 510–530 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Raz, R.: A parallel repetition theorem. SIAM Journal on Computing 27(3), 763–803 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA 2001, pp. 1–10 (2001)

    Google Scholar 

  25. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dinitz, M., Kortsarz, G., Raz, R. (2012). Label Cover Instances with Large Girth and the Hardness of Approximating Basic k-Spanner. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics