Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hardness of Approximation for Quantum Problems

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7391))

Included in the following conference series:

  • 2119 Accesses

Abstract

The polynomial hierarchy plays a central role in classical complexity theory. Here, we define a quantum generalization of the polynomial hierarchy, and initiate its study. We show that not only are there natural complete problems for the second level of this quantum hierarchy, but that these problems are in fact hard to approximate. Our work thus yields the first known hardness of approximation results for a quantum complexity class. Using these techniques, we also obtain hardness of approximation for the class QCMA. Our approach is based on the use of dispersers, and is inspired by the classical results of Umans regarding hardness of approximation for the second level of the classical polynomial hierarchy (Umans 1999). We close by showing that a variant of the local Hamiltonian problem with hybrid classical-quantum ground states is complete for the second level of our quantum hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aharonov, D., Arad, I., Landau, Z., Vazirani, U.: The detectibility lemma and quantum gap amplification. In: 41st ACM Syposium on Theory of Computing, vol. 287, pp. 417–426 (2009)

    Google Scholar 

  2. Aaronson, S.: The quantum PCP manifesto (2006), http://scottaaronson.com/blog/?p=139

  3. Aharonov, D., Naveh, T.: Quantum NP - A survey. Preprint at arXiv:quant-ph/0210077v1 (2002)

    Google Scholar 

  4. Arad, I.: A note about a partial no-go theorem for quantum PCP. Preprint at arXiv:quant-ph/1012.3319 (2010)

    Google Scholar 

  5. Fortnow, L., Lipton, R., van Melkebeek, D., Viglas, A.: Time-space lower bounds for satisfiability. Journal of the ACM 52, 835–865 (2005)

    Article  MathSciNet  Google Scholar 

  6. Fortnow, L.: Time-space tradeoffs for satisfiability. Journal of Computer and System Sciences 60(2), 337–353 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hastings, M.B.: Trivial low energy states for commuting hamiltonians, and the quantum PCP conjecture. Preprint at arXiv:quant-ph/1201.3387 (2012)

    Google Scholar 

  8. Hemaspaandra, L.: SIGACT news complexity theory column 38. ACM SIGACT News 33(4) (2002); Guest column by Schaefer, M., Umans, C.

    Google Scholar 

  9. Kempe, J., Kitaev, A., Regev, O.: The complexity of the local Hamiltonian problem. SIAM Journal on Computing 35(5), 1070–1097 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kempe, J., Regev, O.: 3-local Hamiltonian is QMA-complete. Quantum Information & Computation 3(3), 258–264 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation. American Mathematical Society (2002)

    Google Scholar 

  12. Lautemann, C.: BPP and the polynomial time hierarchy. Information Processing Letters 17, 215–218 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sipser, M.: A complexity theoretic approach to randomness. In: 15th Symposium on Theory of Computing, pp. 330–335. ACM Press (1983)

    Google Scholar 

  14. Srinivasan, A., Zuckerman, D.: Computing with very weak random sources. In: 35th Symposium on Foundations of Computer Science, pp. 264–275 (1994)

    Google Scholar 

  15. Ta-Shma, A., Umans, C., Zuckerman, D.: Lossless condensers, unbalanced expanders, and extractors. Combinatorica 27(2), 213–240 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Umans, C.: Hardness of approximating \(\Sigma_2^p\) minimization problems. In: 40th Symposium on Foundations of Computer Science, pp. 465–474 (1999)

    Google Scholar 

  17. Watrous, J.: Quantum computational complexity. In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science, ch. 17, pp. 7174–7201. Springer (2009)

    Google Scholar 

  18. Yamakami, T.: Quantum NP and a quantum hierarchy. In: 2nd IFIP International Conference on Theoretical Computer Science, pp. 323–336. Kluwer Academic Publishers (2002)

    Google Scholar 

  19. Zuckerman, D.: On unapproximable versions of NP-complete problems. SIAM Journal on Computing 25(6), 1293–1304 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gharibian, S., Kempe, J. (2012). Hardness of Approximation for Quantum Problems. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics