Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Morphic Primitivity and Alphabet Reductions

  • Conference paper
Developments in Language Theory (DLT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7410))

Included in the following conference series:

  • 759 Accesses

Abstract

An alphabet reduction is a 1-uniform morphism that maps a word to an image that contains a smaller number of different letters. In the present paper we investigate the effect of alphabet reductions on morphically primitive words, i.,e., words that are not a fixed point of a nontrivial morphism. Our first main result answers a question on the existence of unambiguous alphabet reductions for such words, and our second main result establishes whether alphabet reductions can be given that preserve morphic primitivity. In addition to this, we study Billaud’s Conjecture – which features a different type of alphabet reduction, but is otherwise closely related to the main subject of our paper – and prove its correctness for a special case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Billaud, M.: A problem with words. Letter in Newsgroup Comp. Theory (1993), https://groups.google.com/d/topic/comp.theory/V_xDDtoR9a4/discussion

  2. Freydenberger, D.D., Nevisi, H., Reidenbach, D.: Weakly unambiguous morphisms. Theoretical Computer Science (to appear)

    Google Scholar 

  3. Freydenberger, D.D., Reidenbach, D., Schneider, J.C.: Unambiguous morphic images of strings. International Journal of Foundations of Computer Science 17, 601–628 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Head, T.: Fixed languages and the adult languages of 0L schemes. International Journal of Computer Mathematics 10, 103–107 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Holub, S.: Polynomial-time algorithm for fixed points of nontrivial morphisms. Discrete Mathematics 309, 5069–5076 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Levé, F., Richomme, G.: On a conjecture about finite fixed points of morphisms. Theoretical Computer Science 339, 103–128 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nevisi, H., Reidenbach, D.: Unambiguous 1-uniform morphisms. In: Proc. 8th International Conference on Words, WORDS 2011. EPTCS, vol. 63, pp. 158–167 (2011)

    Google Scholar 

  8. Reidenbach, D., Schneider, J.C.: Morphically primitive words. Theoretical Computer Science 410, 2148–2161 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Reidenbach, D., Schneider, J.C.: Restricted ambiguity of erasing morphisms. Theoretical Computer Science 412, 3510–3523 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Schneider, J.C.: Unambiguous erasing morphisms in free monoids. RAIRO – Theoretical Informatics and Applications 44, 193–208 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nevisi, H., Reidenbach, D. (2012). Morphic Primitivity and Alphabet Reductions. In: Yen, HC., Ibarra, O.H. (eds) Developments in Language Theory. DLT 2012. Lecture Notes in Computer Science, vol 7410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31653-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31653-1_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31652-4

  • Online ISBN: 978-3-642-31653-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics