Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Secure Distributed Framework for Achieving ε-Differential Privacy

  • Conference paper
Privacy Enhancing Technologies (PETS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7384))

Included in the following conference series:

Abstract

Privacy-preserving data publishing addresses the problem of disclosing sensitive data when mining for useful information. Among the existing privacy models, ε-differential privacy provides one of the strongest privacy guarantees. In this paper, we address the problem of private data publishing where data is horizontally divided among two parties over the same set of attributes. In particular, we present the first generalization-based algorithm for differentially private data release for horizontally-partitioned data between two parties in the semi-honest adversary model. The generalization algorithm correctly releases differentially-private data and protects the privacy of each party according to the definition of secure multi-party computation. To achieve this, we first present a two-party protocol for the exponential mechanism. This protocol can be used as a subprotocol by any other algorithm that requires exponential mechanism in a distributed setting. Experimental results on real-life data suggest that the proposed algorithm can effectively preserve information for a data mining task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mohammed, N., Fung, B.C.M., Hung, P.C.K., Lee, C.: Centralized and distributed anonymization for high-dimensional healthcare data. ACM Transactions on Knowledge Discovery from Data (TKDD) 4(4), 18:1–18:33 (2010)

    Article  Google Scholar 

  2. Jurczyk, P., Xiong, L.: Distributed anonymization: Achieving privacy for both data subjects and data providers. In: Proceedings of the Annual IFIP WG 11.3 Working Conference on Data and Applications Security, DBSec (2009)

    Google Scholar 

  3. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Transaction on Knowledge and Data Engineering (TKDE) (2001)

    Google Scholar 

  4. Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems (2002)

    Google Scholar 

  5. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: ℓ-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD) (2007)

    Google Scholar 

  6. Wang, K., Fung, B.C.M., Yu, P.S.: Handicapping attacker’s confidence: An alternative to k-anonymization. Knowledge and Information Systems (KAIS) 11(3), 345–368 (2007)

    Article  Google Scholar 

  7. Wong, R.C.W., Fu, A.W.C., Wang, K., Pei, J.: Minimality attack in privacy preserving data publishing. In: Proceedings of the International Conference on Very Large Data Bases (VLDB) (2007)

    Google Scholar 

  8. Zhang, L., Jajodia, S., Brodsky, A.: Information disclosure under realistic assumptions: Privacy versus optimality. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS) (2007)

    Google Scholar 

  9. Cormode, G., Srivastava, D., Li, N., Li, T.: Minimizing minimality and maximizing utility: Analyzing methodbased attacks on anonymized data. In: Proceedings of the International Conference on Very Large Data Bases (VLDB) (2010)

    Google Scholar 

  10. Ganta, S.R., Kasiviswanathan, S., Smith, A.: Composition attacks and auxiliary information in data privacy. In: Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (2008)

    Google Scholar 

  11. Kifer, D.: Attacks on privacy and de finetti’s theorem. In: Proceedings of the ACM Conference on Management of Data (SIGMOD) (2009)

    Google Scholar 

  12. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Mohammed, N., Chen, R., Fung, B.C.M., Yu, P.S.: Differentially private data release for data mining. In: Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (2011)

    Google Scholar 

  14. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: A survey of recent developments. ACM Computing Surveys 42(4), 1–53 (2010)

    Article  Google Scholar 

  15. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In: Proceedings of the IEEE International Conference on Data Engineering (ICDE) (2006)

    Google Scholar 

  16. Fung, B.C.M., Wang, K., Yu, P.S.: Anonymizing classification data for privacy preservation. IEEE Transactions on Knowledge and Data Engineering (TKDE) 19(5), 711–725 (2007)

    Article  Google Scholar 

  17. Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms. In: Proceedings of the International Conference on Data Engineering (ICDE) (March 2010)

    Google Scholar 

  18. Jiang, W., Clifton, C.: A secure distributed framework for achieving k-anonymity. Very Large Data Bases Journal (VLDBJ) 15(4), 316–333 (2006)

    Article  Google Scholar 

  19. Mohammed, N., Fung, B.C.M., Debbabi, M.: Anonymity meets game theory: secure data integration with malicious participants. Very Large Data Bases Journal (VLDBJ) 20(4), 567–588 (2011)

    Article  Google Scholar 

  20. Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy preserving distributed data mining. ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) Explorations Newsletter 4(2), 28–34 (2002)

    Google Scholar 

  21. Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In: Proceedings of the ACM Symposium on Theory of Computing (STOC) (2010)

    Google Scholar 

  22. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our Data, Ourselves: Privacy Via Distributed Noise Generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proceedings of the IEEE Symposium on Foundations of Computer Science (2007)

    Google Scholar 

  24. Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge University Press (2001)

    Google Scholar 

  25. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Google Scholar 

  26. Yao, A.C.: Protocols for secure computations. In: Proc. of the IEEE Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS) (1982)

    Google Scholar 

  27. Bunn, P., Ostrovsky, R.: Secure two-party k-means clustering. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS), 486–497 (2007)

    Google Scholar 

  28. Naor, M., Pinkas, B.: Efficient oblivious transfer protocol. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2001)

    Google Scholar 

  29. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game - a completeness theorem for protocols with honest majority. In: Proceedings of the ACM Symposium on the Theory of Computing (STOC) (1987)

    Google Scholar 

  30. Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of Cryptology 15(3), 177–206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)

    Google Scholar 

  32. Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: Proceedings of the ACM Conference on Management of Data (SIGMOD) (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alhadidi, D., Mohammed, N., Fung, B.C.M., Debbabi, M. (2012). Secure Distributed Framework for Achieving ε-Differential Privacy. In: Fischer-Hübner, S., Wright, M. (eds) Privacy Enhancing Technologies. PETS 2012. Lecture Notes in Computer Science, vol 7384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31680-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31680-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31679-1

  • Online ISBN: 978-3-642-31680-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics