Abstract
Privacy-preserving data publishing addresses the problem of disclosing sensitive data when mining for useful information. Among the existing privacy models, ε-differential privacy provides one of the strongest privacy guarantees. In this paper, we address the problem of private data publishing where data is horizontally divided among two parties over the same set of attributes. In particular, we present the first generalization-based algorithm for differentially private data release for horizontally-partitioned data between two parties in the semi-honest adversary model. The generalization algorithm correctly releases differentially-private data and protects the privacy of each party according to the definition of secure multi-party computation. To achieve this, we first present a two-party protocol for the exponential mechanism. This protocol can be used as a subprotocol by any other algorithm that requires exponential mechanism in a distributed setting. Experimental results on real-life data suggest that the proposed algorithm can effectively preserve information for a data mining task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mohammed, N., Fung, B.C.M., Hung, P.C.K., Lee, C.: Centralized and distributed anonymization for high-dimensional healthcare data. ACM Transactions on Knowledge Discovery from Data (TKDD) 4(4), 18:1–18:33 (2010)
Jurczyk, P., Xiong, L.: Distributed anonymization: Achieving privacy for both data subjects and data providers. In: Proceedings of the Annual IFIP WG 11.3 Working Conference on Data and Applications Security, DBSec (2009)
Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Transaction on Knowledge and Data Engineering (TKDE) (2001)
Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems (2002)
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: ℓ-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD) (2007)
Wang, K., Fung, B.C.M., Yu, P.S.: Handicapping attacker’s confidence: An alternative to k-anonymization. Knowledge and Information Systems (KAIS) 11(3), 345–368 (2007)
Wong, R.C.W., Fu, A.W.C., Wang, K., Pei, J.: Minimality attack in privacy preserving data publishing. In: Proceedings of the International Conference on Very Large Data Bases (VLDB) (2007)
Zhang, L., Jajodia, S., Brodsky, A.: Information disclosure under realistic assumptions: Privacy versus optimality. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS) (2007)
Cormode, G., Srivastava, D., Li, N., Li, T.: Minimizing minimality and maximizing utility: Analyzing methodbased attacks on anonymized data. In: Proceedings of the International Conference on Very Large Data Bases (VLDB) (2010)
Ganta, S.R., Kasiviswanathan, S., Smith, A.: Composition attacks and auxiliary information in data privacy. In: Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (2008)
Kifer, D.: Attacks on privacy and de finetti’s theorem. In: Proceedings of the ACM Conference on Management of Data (SIGMOD) (2009)
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)
Mohammed, N., Chen, R., Fung, B.C.M., Yu, P.S.: Differentially private data release for data mining. In: Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (2011)
Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: A survey of recent developments. ACM Computing Surveys 42(4), 1–53 (2010)
LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In: Proceedings of the IEEE International Conference on Data Engineering (ICDE) (2006)
Fung, B.C.M., Wang, K., Yu, P.S.: Anonymizing classification data for privacy preservation. IEEE Transactions on Knowledge and Data Engineering (TKDE) 19(5), 711–725 (2007)
Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms. In: Proceedings of the International Conference on Data Engineering (ICDE) (March 2010)
Jiang, W., Clifton, C.: A secure distributed framework for achieving k-anonymity. Very Large Data Bases Journal (VLDBJ) 15(4), 316–333 (2006)
Mohammed, N., Fung, B.C.M., Debbabi, M.: Anonymity meets game theory: secure data integration with malicious participants. Very Large Data Bases Journal (VLDBJ) 20(4), 567–588 (2011)
Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy preserving distributed data mining. ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) Explorations Newsletter 4(2), 28–34 (2002)
Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In: Proceedings of the ACM Symposium on Theory of Computing (STOC) (2010)
Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our Data, Ourselves: Privacy Via Distributed Noise Generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)
McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proceedings of the IEEE Symposium on Foundations of Computer Science (2007)
Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge University Press (2001)
Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)
Yao, A.C.: Protocols for secure computations. In: Proc. of the IEEE Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS) (1982)
Bunn, P., Ostrovsky, R.: Secure two-party k-means clustering. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS), 486–497 (2007)
Naor, M., Pinkas, B.: Efficient oblivious transfer protocol. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2001)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game - a completeness theorem for protocols with honest majority. In: Proceedings of the ACM Symposium on the Theory of Computing (STOC) (1987)
Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of Cryptology 15(3), 177–206 (2002)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: Proceedings of the ACM Conference on Management of Data (SIGMOD) (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alhadidi, D., Mohammed, N., Fung, B.C.M., Debbabi, M. (2012). Secure Distributed Framework for Achieving ε-Differential Privacy. In: Fischer-Hübner, S., Wright, M. (eds) Privacy Enhancing Technologies. PETS 2012. Lecture Notes in Computer Science, vol 7384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31680-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-31680-7_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31679-1
Online ISBN: 978-3-642-31680-7
eBook Packages: Computer ScienceComputer Science (R0)