Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dynamic Directed Evidential Networks with Conditional Belief Functions: Application to System Reliability

  • Conference paper
Advances in Computational Intelligence (IPMU 2012)

Abstract

The temporal dimension is a very important aspect which must be taken into consideration when reasoning under uncertainty.

The main purpose of this paper is to address this problem by a new evidential framework for modeling temporal changes in data. This method, allowing to model uncertainty and to manage time varying information thanks to the evidence theory, offers an alternative framework for dynamic probabilistic and dynamic possibilistic networks. It is applied to a system reliability analysis for the sake of illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben Yaghlane, B., Mellouli, K.: Inference in Directed Evidential Networks Based on the Transferable Belief Model. Int. J. Approx. Reasoning 48(2), 399–418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dagum, P., Galper, A., Horwitz, E.: Dynamic Networks Models for Forecasting. In: Proc. UAI 1992, pp. 41–48 (1992)

    Google Scholar 

  3. Heni, A., Ben Amor, N., Benferhat, S., Alimi, A.: Dynamic Possibilistic Networks: Representation and Exact Inference. In: IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA 2007), Ostuni, Italy, pp. 1–8 (2007)

    Google Scholar 

  4. Laâmari, W., Ben Yaghlane, B., Simon, C.: Comparing Evidential Graphical Models for Imprecise Reliability. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 191–204. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Lauritzen, S.L.: Graphical Models. Clarendon Press, Oxford (1996)

    Google Scholar 

  6. Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, Dept. Computer Science, UC, Berkeley (2002)

    Google Scholar 

  7. Murphy, K.: Probabilistic Graphical Models. Michael Jordan (2002)

    Google Scholar 

  8. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann (1988)

    Google Scholar 

  9. Satoh, N., Sasaki, M., Yuge, T., Yanagi, S.: Reliability of 3-State Device Systems with Simultaneous Failures. IEEE Transactions on Reliability 42, 470–477 (1993)

    Article  MATH  Google Scholar 

  10. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  11. Shenoy, P.P.: Binary Join Trees for Computing Marginals in the Shenoy-Shafer Architecture. Int. J. Approx. Reasoning 17(2-3), 239–263 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Smets, P.: Belief Function: the Disjunctive Rule of Combination and the Generalized Bayesian Theorem. Int. J. Approx. Reasoning 9, 1–35 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Weber, P., Simon, C.: Dynamic Evidential Networks in System Reliability Analysis: A Dempster Shafer Approach. In: 16th Mediterranean Conference on Control and Automation, France, vol. 93, pp. 262–267 (2008)

    Google Scholar 

  14. Xu, H., Smets, P.: Evidential Reasoning with Conditional Belief Functions. In: Heckerman, D., Poole, D., Lopez De Mantaras, R. (eds.) UAI 1994, pp. 598–606. Morgan Kaufmann, California (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Laâmari, W., Ben Yaghlane, B., Simon, C. (2012). Dynamic Directed Evidential Networks with Conditional Belief Functions: Application to System Reliability. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31718-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31718-7_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31717-0

  • Online ISBN: 978-3-642-31718-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics