Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7200))

Abstract

In this chapter, we propose an analysis of the approaches and methods available for the automated extraction of knowledge from event flows. We specifically focus on the reconstruction of processes from automatically generated events logs. In this context, we consider that knowledge can be directly gathered by means of the reconstruction of business process models. In the ArtDECO project, we frame such approaches inside delta analysis, that is the detection of differences of the executed processes from the planned models. To this end, we provide an overview of the different techniques available for process reconstruction, and propose an approach for the detection of deviations. To show its effectiveness, we instantiate the usage to the ArtDECO case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aires da Silva, G., Ferreira, D.R.: Applying Hidden Markov Models to Process Mining. In: Rocha, A., Restivo, F., Reis, L.P., Torrao, S. (eds.) Sistemas e Tecnologias de Informacao: Actas da 4a Conferencia Iberica de Sistemas e Tecnologias de Informacao, pp. 207–210. AISTI/FEUP/UPF (2009)

    Google Scholar 

  2. Coman, I., Sillitti, A.: An Empirical Exploratory Study on Inferring Developers’ Activities from Low-Level Data. In: 19th International Conference on Software Engineering and Knowledge Engineering (SEKE 2007), Boston, MA, USA, July 9-11 (2007)

    Google Scholar 

  3. Coman, I., Sillitti, A.: Automated Identification of Tasks in Development Sessions. In: 16th IEEE International Conference on Program Comprehension (ICPC 2008), Amsterdam, The Netherlands, June 10-13 (2008)

    Google Scholar 

  4. Coman, I., Sillitti, A., Succi, G.: Investigating the Usefulness of Pair-Programming in a Mature Agile Team. In: 9th International Conference on eXtreme Programming and Agile Processes in Software Engineering (XP 2008), Limerick, Ireland, June 10-14 (2008)

    Google Scholar 

  5. Coman, I., Sillitti, A.: Automated Segmentation of Development Sessions into Task-related Subsections. International Journal of Computers and Applications 31(3) (2009)

    Google Scholar 

  6. Coman, I., Sillitti, A., Succi, G.: A Case-study on Using an Automated In-process Software Engineering Measurement and Analysis System in an Industrial Environment. In: 31st International Conference on Software Engineering (ICSE 2009), Vancouver, BC, Canada, May 16-24 (2009)

    Google Scholar 

  7. Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249 (1998)

    Article  Google Scholar 

  8. Ferreira, D., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching Process Mining with Sequence Clustering: Experiments and Findings. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 360–374. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Fronza, I., Sillitti, A., Succi, G.: Modeling Spontaneous Pair Programming when New Developers Join a Team. In: 3rd International Symposium on Empirical Software Engineering and Measurement (ESEM 2009), Lake Buena Vista, FL, USA, October 15-16 (2009)

    Google Scholar 

  10. Greco, G., Guzzo, A., Pontieri, L., Sacca’, D.: Discovering expressive process models by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

    Article  Google Scholar 

  11. Greco, G., Guzzo, A., Pontieri, L.: Mining taxonomies of process models. Data & Knowledge Engineering 67(1), 74–102 (2008)

    Article  Google Scholar 

  12. Goedertier, S., Martens, D., Baesens, B., Haesen, R., Vanthienen, J.: Process Mining as First-Order Classification Learning on Logs with Negative Events. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 42–53. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Guenther, C.W., Van der Aalst, W.M.P.: Mining Activity Clusters from Low-Level Event Logs. BETA Working Paper Series, WP 165. Eindhoven University of Technology, Eindhoven (2006)

    Google Scholar 

  14. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Günther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity Mining by Global Trace Segmentation. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 128–139. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Herbst, J.: Dealing with concurrency in workflow induction. In: Proceedings of the 7th European Concurrent Engineering Conference, Society for Computer Simulation (SCS), pp. 169-174 (2000)

    Google Scholar 

  17. Herbst, J., Karagiannis, D.: Integrating Machine Learning and Workflow Management to Support Acquisition and Adaptation of Workflow Models. International Journal of Intelligent Systems in Accounting, Finance and Management 9, 67–92 (2000)

    Article  Google Scholar 

  18. Janes, A., Scotto, M., Sillitti, A., Succi, G.: A perspective on non-invasive software management. In: 2006 IEEE Instrumentation and Measurement Technology Conference (IMTC 2006), Sorrento, Italy, April 24-27 (2006)

    Google Scholar 

  19. Janes, A., Sillitti, A., Succi, G.: Non-invasive software process data collection for expert identification. In: 20th International Conference on Software Engineering and Knowledge Engineering (SEKE 2008), San Francisco, CA, USA, July 1-3 (2008)

    Google Scholar 

  20. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying Inductive Logic Programming to Process Mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Maruster, L., Weijters, A.J.M.M., Van der Aalst, W.M.P., Van den Bosch, A.: A rule-based approach for process discovery: Dealing with noise and imbalance in process logs. Data Mining and Knowledge Discovery 13(1), 67–87 (2006)

    Article  MathSciNet  Google Scholar 

  22. de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic Process Mining: A Basic Approach and Its Challenges. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 203–215. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. de Medeiros, A.K.A., Guzzo, A., Greco, G., van der Aalst, W.M.P., Weijters, A.J.M.M., van Dongen, B.F., Saccà, D.: Process Mining Based on Clustering: A Quest for Precision. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 17–29. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Rozinat, A., van der Aalst, W.M.P.: Conformance Testing: Measuring the Fit and Appropriateness of Event Logs and Process Models. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 163–176. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Schimm, G.: Mining exact models of concurrent workflows. Comput. Ind. 53, 265–281 (2004)

    Article  Google Scholar 

  26. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: Dealing with Software Metrics Collection and Analysis: a Relational Approach. Studia Informatica Universalis, Suger 3(3), 343–366 (2004)

    Google Scholar 

  27. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Collecting, Integrating and Analyzing Software Metrics and Personal Software Process Data. In: Proceedings of the 29th EUROMICRO Conference (2003)

    Google Scholar 

  28. Van der Aalst, W.M.P., Weijters, A.: Process mining: a research agenda. Comput. Ind. 53, 231–244 (2002)

    Article  Google Scholar 

  29. Van der Aalst, W.M.P., Van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data & Knowledge Engineering 47(2), 237–267 (2003)

    Article  Google Scholar 

  30. Van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)

    Article  Google Scholar 

  31. Van der Aalst, W.M.P., Reijers, H., Song, M.: Discovering Social Networks from Event Logs. Computer Supported Cooperative work 14(6), 549–593 (2005)

    Article  Google Scholar 

  32. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Genetic Process Mining. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 48–69. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  33. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace Clustering in Process Mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  34. Weijters, A.J.M.M., Van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)

    Google Scholar 

  35. Wen, L., Wang, J., Van der Aalst, W.M.P., Wang, Z., Sun, J.: A Novel Approach for Process Mining Based on Event Types. BETA Working Paper Series, WP 118. Eindhoven University of Technology, Eindhoven (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mahdiraji, A.R., Rossi, B., Sillitti, A., Succi, G. (2012). Knowledge Extraction from Events Flows. In: Anastasi, G., Bellini, E., Di Nitto, E., Ghezzi, C., Tanca, L., Zimeo, E. (eds) Methodologies and Technologies for Networked Enterprises. Lecture Notes in Computer Science, vol 7200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31739-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31739-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31738-5

  • Online ISBN: 978-3-642-31739-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics