Abstract
Given a tree T = (V, E) with n vertices and a collection of terminal sets D = {S 1, S 2, …, S c }, where each S i is a subset of V and c is a constant, the generalized Multiway Cut in trees problem (GMWC(T)) asks to find a minimum size edge subset E′ ⊆ E such that its removal from the tree separates all terminals in S i from each other for each terminal set S i . The GMWC(T) problem is a natural generalization of the classical Multiway Cut in trees problem, and has an implicit relation to the Densest k-Subgraph problem. In this paper, we show that the GMWC(T) problem is fixed-parameter tractable by giving an O(n 2 + 2k) time algorithm, where k is the size of an optimal solution, and the GMWC(T) problem is polynomial time solvable when the problem is restricted in paths. We also discuss some heuristics for the GMWC(T) problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting high log-densities – an O(n 1/4) approximation for densest k-subgraph. In: Schulman, L. (ed.) Proceedings of the 42nd Annual ACM Symposium on Theory of Computing, STOC, pp. 201–210. ACM (2010)
Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)
Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Fortnow, L., Vadhan, S. (eds.) Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC, pp. 459–468. ACM (2011)
Chen, J.-E., Liu, Y., Lu, S.-J.: An improved parameterized algorithm for the minimum node multiway cut problem. Algorithmica 55, 1–13 (2009)
Chopra, S., Rao, M.: On the Multiway Cut Polyhedron. Networks 21, 51–89 (1991)
Costa, M.-C., Billionnet, A.: Multiway cut and integer flow problems in trees. Electronic Notes in Discrete Mathematics 17, 105–109 (2004)
Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.: The complexity of multiterminal cuts. SIAM Journal on Computing 23, 864–894 (1994)
Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithm for integral flow and multicut in trees. Algorithmica 18, 3–20 (1997)
Guo, J., Niedermeier, R.: Fixed-parameter tractability and data reduction for multicut in trees. Networks 46(3), 124–135 (2005)
Karger, D., Klein, P., Stein, C., Thorup, M., Young, N.: Rounding algorithms for a geometric embedding of minimum multiway cut. Mathematics of Operations Research 29(3), 436–461 (2004)
Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. Journal of Computer and System Sciences 74(3), 335–349 (2008)
Manokaran, R., Naor, J., Raghavendra, P., Schwartz, R.: SDP gaps and UGC hardness for multiway cut, 0-extension, and metric labeling. In: Dwork, C. (ed.) Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC, pp. 11–20. ACM (2008)
Mestre, J.: Lagrangian relaxation and partial cover (extended abstract). In: Albers, S., Weil, P. (eds.) Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 539–550. LIPIcs 1 Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2008)
Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-tractable algorithms. Information Processing Letters 73, 125–129 (2000)
Xiao, M.-Y.: Simple and improved parameterized algorithms for multiterminal cuts. Theory of Computing Systems 46, 723–736 (2010)
Zhang, P.: Approximating Generalized Multicut on Trees. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 799–808. Springer, Heidelberg (2007)
Zhang, P., Zhu, D.-M., Luan, J.-F.: An approximation algorithm for the generalized k-Multicut problem. Discrete Applied Mathematics 160(7-8), 1240–1247 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, H., Zhang, P. (2012). On the Generalized Multiway Cut in Trees Problem. In: Lin, G. (eds) Combinatorial Optimization and Applications. COCOA 2012. Lecture Notes in Computer Science, vol 7402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31770-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-31770-5_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31769-9
Online ISBN: 978-3-642-31770-5
eBook Packages: Computer ScienceComputer Science (R0)