Abstract
We show that, for any constant ρ > 1, there exists an integer constant k such that the Yao-Yao graph with parameter k defined on a civilized unit disk graph is a geometric spanner of stretch factor ρ. This improves the results of Wang and Li in several aspects, as described in the paper. We also show that the Yao-Yao graph with parameter k = 4 defined on the complete Euclidean graph is not a spanner and is not plane. This partially answers an open problem posed by Demaine, Mitchell and O’Rourke about the spanner properties of Yao-Yao graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)
Bose, P., Damian, M., Douïeb, K., O’Rourke, J., Seamone, B., Smid, M., Wuhrer, S.: π/2-Angle Yao Graphs Are Spanners. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 446–457. Springer, Heidelberg (2010)
Bose, P., Damian, M., Douïeb, K., O’Rourke, J., Seamone, B., Smid, M., Wuhrer, S.: π/2-angle Yao graphs are spanners. CoRR, abs/1001.2913 (2010)
Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded degree and low weight. Algorithmica 42(3-4), 249–264 (2005)
Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wireless Networks 7(6), 609–616 (2001)
Damian, M., Raudonis, K.: Yao Graphs Span Theta Graphs. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 181–194. Springer, Heidelberg (2010)
Das, G., Heffernan, P., Narasimhan, G.: Optimally sparse spanners in 3-dimensional Euclidean space. In: Proceedings of the 19th ACM Symposium on Computational Geometry, pp. 53–62 (1993)
Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean spanners. In: Proceedings of the 20th ACM Symposium on Computational Geometry, pp. 132–139 (1994)
Das, G., Narasimhan, G., Salowe, J.: A new way to weigh malnourished Euclidean graphs. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 215–222 (1995)
Demaine, E., Mitchell, J., O’Rourke, J. (eds.): The open problems project: Problem 70, http://maven.smith.edu/~orourke/TOPP/P70.html
Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for constructing sparse geometric spanners. SIAM Journal on Computing 31(5), 1479–1500 (2002)
Kanj, I., Perković, L., Xia, G.: On spanners and lightweight spanners of geometric graphs. SIAM Journal on Computing 39(6), 2132–2161 (2010)
Keil, J., Gutwin, C.: Classes of graphs which approximate the complete Euclidean graph. Discrete & Computational Geometry 7, 13–28 (1992)
Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: Proceedings of the 11th Canadian Conference on Computational Geometry, pp. 51–54 (1999)
Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the complete graphs and almost as cheap as minimum spanning trees. Algorithmica 8(3), 251–256 (1992)
Li, X.-Y., Calinescu, G., Wan, P.-J., Wang, Y.: Localized delaunay triangulation with application in Ad Hoc wireless networks. IEEE Transactions on Parallel and Distributed Systems 14(10), 1035–1047 (2003)
Molla, N.: Yao spanners for wireless ad hoc networks. M.S. Thesis, Department of Computer Science, Villanova University (December 2009)
Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press (2007)
Wang, Y., Li, X.-Y.: Distributed spanner with bounded degree for wireless ad hoc networks. In: Proceedings of the 16th International Parallel and Distributed Processing Symposium (2002)
Wang, Y., Li, X.-Y.: Localized construction of bounded degree and planar spanner for wireless ad hoc networks. Mobile Networks and Applications 11(2), 161–175 (2006)
Yao, A.C.-C.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM Journal on Computing 11(4), 721–736 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kanj, I.A., Xia, G. (2012). On Certain Geometric Properties of the Yao-Yao Graphs. In: Lin, G. (eds) Combinatorial Optimization and Applications. COCOA 2012. Lecture Notes in Computer Science, vol 7402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31770-5_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-31770-5_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31769-9
Online ISBN: 978-3-642-31770-5
eBook Packages: Computer ScienceComputer Science (R0)