Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Certain Geometric Properties of the Yao-Yao Graphs

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7402))

Abstract

We show that, for any constant ρ > 1, there exists an integer constant k such that the Yao-Yao graph with parameter k defined on a civilized unit disk graph is a geometric spanner of stretch factor ρ. This improves the results of Wang and Li in several aspects, as described in the paper. We also show that the Yao-Yao graph with parameter k = 4 defined on the complete Euclidean graph is not a spanner and is not plane. This partially answers an open problem posed by Demaine, Mitchell and O’Rourke about the spanner properties of Yao-Yao graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bose, P., Damian, M., Douïeb, K., O’Rourke, J., Seamone, B., Smid, M., Wuhrer, S.: π/2-Angle Yao Graphs Are Spanners. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 446–457. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Bose, P., Damian, M., Douïeb, K., O’Rourke, J., Seamone, B., Smid, M., Wuhrer, S.: π/2-angle Yao graphs are spanners. CoRR, abs/1001.2913 (2010)

    Google Scholar 

  4. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded degree and low weight. Algorithmica 42(3-4), 249–264 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wireless Networks 7(6), 609–616 (2001)

    Article  MATH  Google Scholar 

  6. Damian, M., Raudonis, K.: Yao Graphs Span Theta Graphs. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 181–194. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Das, G., Heffernan, P., Narasimhan, G.: Optimally sparse spanners in 3-dimensional Euclidean space. In: Proceedings of the 19th ACM Symposium on Computational Geometry, pp. 53–62 (1993)

    Google Scholar 

  8. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean spanners. In: Proceedings of the 20th ACM Symposium on Computational Geometry, pp. 132–139 (1994)

    Google Scholar 

  9. Das, G., Narasimhan, G., Salowe, J.: A new way to weigh malnourished Euclidean graphs. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 215–222 (1995)

    Google Scholar 

  10. Demaine, E., Mitchell, J., O’Rourke, J. (eds.): The open problems project: Problem 70, http://maven.smith.edu/~orourke/TOPP/P70.html

  11. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for constructing sparse geometric spanners. SIAM Journal on Computing 31(5), 1479–1500 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kanj, I., Perković, L., Xia, G.: On spanners and lightweight spanners of geometric graphs. SIAM Journal on Computing 39(6), 2132–2161 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Keil, J., Gutwin, C.: Classes of graphs which approximate the complete Euclidean graph. Discrete & Computational Geometry 7, 13–28 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: Proceedings of the 11th Canadian Conference on Computational Geometry, pp. 51–54 (1999)

    Google Scholar 

  15. Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the complete graphs and almost as cheap as minimum spanning trees. Algorithmica 8(3), 251–256 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, X.-Y., Calinescu, G., Wan, P.-J., Wang, Y.: Localized delaunay triangulation with application in Ad Hoc wireless networks. IEEE Transactions on Parallel and Distributed Systems 14(10), 1035–1047 (2003)

    Article  Google Scholar 

  17. Molla, N.: Yao spanners for wireless ad hoc networks. M.S. Thesis, Department of Computer Science, Villanova University (December 2009)

    Google Scholar 

  18. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press (2007)

    Google Scholar 

  19. Wang, Y., Li, X.-Y.: Distributed spanner with bounded degree for wireless ad hoc networks. In: Proceedings of the 16th International Parallel and Distributed Processing Symposium (2002)

    Google Scholar 

  20. Wang, Y., Li, X.-Y.: Localized construction of bounded degree and planar spanner for wireless ad hoc networks. Mobile Networks and Applications 11(2), 161–175 (2006)

    Article  Google Scholar 

  21. Yao, A.C.-C.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM Journal on Computing 11(4), 721–736 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kanj, I.A., Xia, G. (2012). On Certain Geometric Properties of the Yao-Yao Graphs. In: Lin, G. (eds) Combinatorial Optimization and Applications. COCOA 2012. Lecture Notes in Computer Science, vol 7402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31770-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31770-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31769-9

  • Online ISBN: 978-3-642-31770-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics