Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Feature-Based Forensic Camera Model Identification

  • Conference paper
Transactions on Data Hiding and Multimedia Security VIII

Part of the book series: Lecture Notes in Computer Science ((TDHMS,volume 7228))

Abstract

State-of-the-art digital forensic techniques for camera model identification draw attention on different sets of features to assign an image to the employed source model. This paper complements existing work, by a comprehensive evaluation of known feature sets employing a large set of 26 camera models with altogether 74 devices. We achieved the highest accuracies using the extended colour feature set and present several detail experiments to validate the ability of the features to separate between camera models and not between devices. Analysing more than 16,000 images, we present a comprehensive evaluation on 1) the number of required images and devices for training, 2) the influence of the number of camera models and camera settings on the detection results and 3) possibilities to handle unknown camera models when not all models coming into question are available or are even known. All experiments in this paper suggest: feature-based forensic camera model identification works in practice and provides reliable results even if only one device for each camera model under investigation is available to the forensic investigator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Böhme, R., Freiling, F., Gloe, T., Kirchner, M.: Multimedia Forensics Is Not Computer Forensics. In: Geradts, Z.J.M.H., Franke, K.Y., Veenman, C.J. (eds.) IWCF 2009. LNCS, vol. 5718, pp. 90–103. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Khanna, N., Mikkilineni, A.K., Chiu, G.T.C., Allebach, J.P., Delp, E.J.: Forensic classification of imaging sensor types. In: Delp, E.J., Wong, P.W. (eds.) Proceedings of SPIE: Security and Watermarking of Multimedia Content IX, vol. 6505, p. 65050U (2007)

    Google Scholar 

  3. Lyu, S., Farid, H.: How realistic is photorealistic? IEEE Transactions on Signal Processing 53(2), 845–850 (2005)

    Article  MathSciNet  Google Scholar 

  4. Fridrich, J.: Digital image forensics. IEEE Signal Processing Magazine 26(2), 26–37 (2009)

    Article  Google Scholar 

  5. Gloe, T., Franz, E., Winkler, A.: Forensics for flatbed scanners. In: Delp, E.J., Wong, P.W. (eds.) Proceedings of SPIE: Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, p. 65051I (2007)

    Google Scholar 

  6. Gou, H., Swaminathan, A., Wu, M.: Robust scanner identification based on noise features. In: Delp, E.J., Wong, P.W. (eds.) Proceedings of SPIE: Security and Watermarking of Multimedia Content IX, vol. 6505, p. 65050S (2007)

    Google Scholar 

  7. Khanna, N., Mikkikineni, A.K., Chiu, G.T.C., Allebach, J.P., Delp, E.J.: Scanner identification using sensor pattern noise. In: Delp, E.J., Wong, P.W. (eds.) Proceedings of SPIE: Security and Watermarking of Multimedia Content IX, vol. 6505, p. 65051K (2007)

    Google Scholar 

  8. Goljan, M., Fridrich, J., Filler, T.: Large scale test of sensor fingerprint camera identification. In: Delp, E.J., Dittmann, J., Memon, N., Wong, P.W. (eds.) Proceedings of SPIE: Media Forensics and Security XI, vol. 7254, pp. 7254–18 (2009)

    Google Scholar 

  9. Johnson, M.K., Farid, H.: Exposing digital forgeries through chromatic aberration. In: Proceedings of the Multimedia and Security Workshop (MM&Sec 2006), pp. 48–55 (2006)

    Google Scholar 

  10. Gloe, T., Borowka, K., Winkler, A.: Efficient estimation and large-scale evaluation of lateral chromatic aberration for digital image forensics. In: Memon, N.D., Dittmann, J., Alattar, A.M., Delp, E.J. (eds.) Proceedings of SPIE: Media Forensics and Security II, vol. 7541, pp. 7541–7 (2010)

    Google Scholar 

  11. Swaminathan, A., Wu, M., Liu, K.J.R.: Nonintrusive component forensics of visual sensors using output images. IEEE Transactions on Information Forensics and Security 2(1), 91–106 (2007)

    Article  Google Scholar 

  12. Cao, H., Kot, A.C.: Accurate detection of demosaicing regularity for digital image forensics. IEEE Transactions on Information Forensics and Security 4(4), 899–910 (2009)

    Article  Google Scholar 

  13. Farid, H.: Digital image ballistics from JPEG quantization: A followup study. Technical Report TR2008-638, Department of Computer Science, Dartmouth College, Hanover, NH, USA (2008)

    Google Scholar 

  14. Kee, E., Johnson, M.K., Farid, H.: Digital image authentication from JPEG headers. IEEE Transactions on Information Forensics and Security 6(3), 1066–1075 (2011)

    Article  Google Scholar 

  15. Kharrazi, M., Sencar, H.T., Memon, N.: Blind source camera identification. In: Proceedings of the 2004 IEEE International Conference on Image Processing (ICIP 2004), pp. 709–712 (2004)

    Google Scholar 

  16. Çeliktutan, O., Avcibas, İ., Sankur, B.: Blind identification of cellular phone cameras. In: Delp, E.J., Wong, P.W. (eds.) Proceedings of SPIE: Security and Watermarking of Multimedia Content IX, vol. 6505, p. 65051H (2007)

    Google Scholar 

  17. Çeliktutan, O., Sankur, B., Avcibas, İ.: Blind identification of source cell-phone model. IEEE Transactions on Information Forensics and Security 3(3), 553–566 (2008)

    Article  Google Scholar 

  18. Gloe, T., Borowka, K., Winkler, A.: Feature-Based Camera Model Identification Works in Practice – Results of a Comprehensive Evaluation Study. In: Katzenbeisser, S., Sadeghi, A.-R. (eds.) IH 2009. LNCS, vol. 5806, pp. 262–276. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Gloe, T., Böhme, R.: The ‘Dresden Image Database’ for benchmarking digital image forensics. In: Proceedings of the 25th Symposium on Applied Computing (ACM SAC), vol. 2, pp. 1585–1591 (2010)

    Google Scholar 

  20. Gloe, T., Cebron, N., Böhme, R.: An ML perspective on feature-based forensic camera model identification. In: DAGM Workshop Pattern Recognition for IT Security, Darmstadt, Germany, September 21 (2010)

    Google Scholar 

  21. Farid, H., Lyu, S.: Higher-order wavelet statistics and their application to digital forensics. In: IEEE Workshop on Statistical Analysis in Computer Vision (2003)

    Google Scholar 

  22. Avcıbaş, İ., Sankur, B., Sayood, K.: Statistical evaluation of image quality measures. Journal of Electronic Imaging 11(2), 206–223 (2002)

    Article  Google Scholar 

  23. Avcibas, İ., Kharrazi, M., Memon, N.D., Sankur, B.: Image steganalysis with binary similarity measures. EURASIP Journal on Applied Signal Processing 2005(17), 2749–2757 (2005)

    Article  MATH  Google Scholar 

  24. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. Software (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  25. Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognition Letters 15(11), 1119–1125 (1994)

    Article  Google Scholar 

  26. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Computation 13(7), 1443–1471 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gloe, T. (2012). Feature-Based Forensic Camera Model Identification. In: Shi, Y.Q., Katzenbeisser, S. (eds) Transactions on Data Hiding and Multimedia Security VIII. Lecture Notes in Computer Science, vol 7228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31971-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31971-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31970-9

  • Online ISBN: 978-3-642-31971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics