Abstract
This paper reviews the proposed opponent modeling algorithms within the soccer simulation domain. RoboCup soccer simulation 2D is a rich multi agent environment where opponent modeling plays a crucial role. In multi agent systems with adversarial and cooperative agents, team agents should be adapted to the current environment and opponent in order to propose appropriate and effective counteractions. Predicting the opponent’s future behaviors during competition allows for more informed decisions. We divide opponent modeling into two categories of individual agent behaviors and team behaviors. Individual behaviors concern modeling the low-level behaviors of individual opponent agents, however in team behaviors, the high-level strategy of the entire team like formation, offensive and defensive system, is recognized. Several methods have been proposed to create different models of opponents to improve the performance of teams in an essential aspect. In this paper, we review the approaches to the problem of opponent modeling published from 2000 to 2010.
Chapter PDF
Similar content being viewed by others
References
Turocy, T.L., Stengel, B.V.: Game Theory. CDAM Research Report LSE-CDAM (2001)
Ball, D., Wyeth, G.: Classifying an Opponent’s Behaviour in Robot Soccer. In: Proceedings of the 2003 Australasian Conference on Robotics and Automation, ACRA (2003)
Fathzadeh, R., Mokhtari, V., Kangavari, M.R.: Opponent Provocation and Behavior Classification: A Machine Learning Approach. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007. LNCS (LNAI), vol. 5001, pp. 540–547. Springer, Heidelberg (2008)
Iglesias, J.A., Ledezma, A., SanchÃs, A.: A Comparing Method of Two Team Behaviours in the Simulation Coach Competition. In: Torra, V., Narukawa, Y., Valls, A., Domingo-Ferrer, J. (eds.) MDAI 2006. LNCS (LNAI), vol. 3885, pp. 117–128. Springer, Heidelberg (2006)
Kitano, H., Tambe, M., Stone, P., Veloso, M., Coradeschi, S., Osawa, E., Matsubara, H., Noda, I., Asada, M.: The RoboCup Synthetic Agent Challenge 1997. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pp. 24–29 (1997)
Noda, I., Matsubara, H., Hiraki, K., Frank, I.: Soccer server: A tool for research on multi-agent systems. Applied Artificial Intelligence 12(2–3), 233–250 (1998)
Nakashima, T., Uenishi, T., Narimoto, Y.: Off-line learning of soccer formations from game logs. In: World Automation Congress (WAC), pp. 1–6 (2010)
MarÃn, C.A., Castillo, L.P., Garrido, L.: Dynamic Adaptive Opponent Modeling: Predicting Opponent Motion while Playing Soccer. In: Eduardo Alonso, E., Guessoum, Z. (eds.) Fifth European Workshop on Adaptive Agents and Multi-agent Systems Proceedings. LIP6, Paris, France (March 2005)
Fyfe, C., Tiño, P., Charles, D., GarcÃa-Osorio, C., Yin, H.: Intelligent Data Engineering and Automated Learning. In: IDEAL 2010. Springer (2010)
Laviers, K., Sukthankar, G., Klenk, M., Aha, D.W., Molineaux, M.: Opponent modeling and spatial similarity to retrieve and reuse superior plays. In: Proceedings of the Workshop on Case-Based Reasoning for Computer Games. AAAI Press, California (2009)
The RoboCup Soccer Simulator, http://sourceforge.net/projects/sserver/files/rcssmonitor/
Almeida, R., Reis, L.P., Jorge, A.M.: Analysis and Forecast of Team Formation in the Simulated Robotic Soccer Domain. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M. (eds.) EPIA 2009. LNCS (LNAI), vol. 5816, pp. 239–250. Springer, Heidelberg (2009)
Riley, P., Veloso, M.: On Behavior Classification in Adversarial Environments. In: Parker, L.E., Bekey, G., Barhen, J. (eds.) Distributed Autonomous Robotic Systems, vol, vol. 4, pp. 371–380. Springer, Heidelberg (2000)
Riley, P., Veloso, M.: Recognizing Probabilistic Opponent Movement Models. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 453–458. Springer, Heidelberg (2002)
Riley, P., Veloso, M.: Coaching a Simulated Soccer Team by Opponent Model Recognition. In: Proceedings of the Fifth International Conference on Autonomous Agents (Agents 2001), pp. 155–156 (2001)
Riley, P., Veloso, M.: Planning for distributed execution through use of probabilistic opponent models. In: Proceedings of the IJCAI-2001Workshop PRO-2: Planning under Uncertainty and Incomplete Information, pp. 72–81 (2001)
Veloso, M.M., Pollack, M.E., Cox, M.T.: Rationale-Based Monitoring for Planning in Dynamic Environments. In: Proceedings of the Fourth International Conference on Artificial Intelligence Planning Systems (1998)
Huang, Z., Yang, Y., Chen, X.: An approach to plan recognition and retrieval for multi-agent systems. In: Proc. of AORC, Sydney, Australia (January 2003)
Iglesias, J.A., Ledezma, A., Sanchis, A.: Caos coach 2006 simulation team: An opponent modeling approach. Computing and Informatics 28(1), 57–80 (2009)
Iglesias, J.A., Ledezma, A., Sanchis, A.: Comparing behavior in agent modeling task. Structure, 289–296 (2006)
Iglesias, J.A., Ledezma, A., Sanchis, A., Kaminka, G.A.: Classifying efficiently the behavior of a soccer team. In: Burgard, W., et al. (eds.) IAS-10, pp. 316–323 (2008)
Steffens, T.: Feature-Based Declarative Opponent-Modelling. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 125–136. Springer, Heidelberg (2004)
Steffens, T.: Similarity-based opponent modeling using imperfect domain theories. In: CIG (2005)
Ahmadi, M., Lamjiri, A.K., Nevisi, M.M., Habibi, J., Badie, K.: Using a two-layered case-based reasoning for prediction in soccer coach. In: Proceedings of the International Conference on Machine Learning; Models, Technologies and Applications, pp. 181–185 (2004)
Kaminka, G.A., Fidanboylu, M., Chang, A., Veloso, M.: Learning the sequential coordinated behavior of teams from observations. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 111–125. Springer, Heidelberg (2003)
Lattner, A.D., Miene, A., Visser, U., Herzog, O.: Sequential Pattern Mining for Situation and Behavior Prediction in Simulated Robotic Soccer. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 118–129. Springer, Heidelberg (2006)
Ledezma, A., Aler, R., SanchÃs, A., Borrajo, D.: Predicting Opponent Actions by Observation. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 286–296. Springer, Heidelberg (2005)
Ramos, F., Ayanegui, H.: Discovering Tactical Behavior Patterns Supported by Topological Structures in Soccer Agent Domains. In: International Conference on Autonomous Agents, Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, Estoril, vol. 3, pp. 1421–1424 (2008)
Fathzadeh, R., Mokhtari, V., Mousakhani, M., Mahmoudi, F.: Mining Opponent Behavior: A Champion of RoboCup Coach Competition. In: IEEE 3rd Latin American Robotics Symposium, pp. 80–83 (2006)
Fathzadeh, R., Mokhtari, V., Mousakhani, M., Shahri, A.M.: Coaching with Expert System Towards RoboCup Soccer Coach Simulation. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 488–495. Springer, Heidelberg (2006)
Fathzadeh, R., Mokhtari, V., Haghighat, A.T., Mousakhani, M.: Using expert system in robocup soccer coach simulation: An opponent modeling approach. In: Proceedings Second IEEE Latin-American Robotics Symposium, Sao luis-Maranhao, Brazil (2005)
Bombini, G., Di Mauro, N., Ferilli, S., Esposito, F.: Classifying Agent Behaviour through Relational Sequential Patterns. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA 2010. LNCS, vol. 6070, pp. 273–282. Springer, Heidelberg (2010)
Reis, L.P., Lopes, R., Mota, L., Lau, N.: Playmaker: Graphical Definition of Formations and Setplays. In: Information Systems and Technologies (CISTI), pp. 1–6 (2010)
Uenishi, T., Nakashima, T.: Team Description of opuCI 2D for RoboCup (2009)
Ayanegui-Santiago, H.: Recognizing Team Formations in Multi-agent Systems: Applications in Robotic Soccer. In: Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems, pp. 163–173 (2009)
Faria, B.M., Reis, L.P., Lau, N., Castillo, G.: Machine Learning Algorithms applied to the Classification of Robotic Soccer Formations and Opponent Team. In: Proceedings of the 2010 IEEE Conference on Cybernetics and Intelligent Systems (CIS) and Robotics, Automation and Mechatronics (RAM), Singapore, pp. 344–349 (2010)
Visser, U., Drücker, C., Hübner, S., Schmidt, E., Weland, H.-G.: Recognizing Formations in Opponent Teams. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 391–396. Springer, Heidelberg (2001)
Riley, P., Veloso, M., Kaminka, G.: An empirical study of coaching. In: Asama, H., Arai, T., Fukuda, T., Hasegawa, T. (eds.) Distributed Autonomous Robotic Systems 5, pp. 215–224. Springer (2002)
Kuhlmann, G., Stone, P., Lallinger, J.: The UT Austin Villa 2003 Champion Simulator Coach: A Machine Learning Approach. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 636–644. Springer, Heidelberg (2005)
Weka. Weka Machine Learning Project, http://www.cs.waikato.ac.nz/~ml/index.html (acessed: October 04, 2008)
Stone, P., Riley, P., Veloso, M.: Defining and Using Ideal Teammate and Opponent Agent Models. In: Proceedings of the Twelfth Annual Conference on Innovative Applications of Artificial Intelligence (2000)
Ledezma, A., Aler, R., Sanchis, A., Borrajo, D.: Predicting opponent actions in the RoboSoccer. In: IEEE International Conference on Systems, Man and Cybernetics, p. 5 (2002)
Ledezma, A., Aler, R., Sanchis, A., Borrajo, D.: OMBO: An opponent modeling approach. AI Communications 22, 21–35 (2009)
Illobre, A., Gonzalez, J., Otero, R., Santos, J.: Learning action descriptions of opponent behavior in the Robocup 2D simulation environment. ILP (2010)
Chen, M., Foroughi, E., Heintz, S., Kapetanakis, S., Kostiadis, K., Kummeneje, J., Noda, I., Obst, O., Riley, P., Steffens, T., Wang, Y., Yin, X.: RoboCup Soccer Server manual for Soccer Server version 7.07 or Latest., http://sourceforge.net/projects/sserver (accessed on: October 01, (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pourmehr, S., Dadkhah, C. (2012). An Overview on Opponent Modeling in RoboCup Soccer Simulation 2D. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds) RoboCup 2011: Robot Soccer World Cup XV. RoboCup 2011. Lecture Notes in Computer Science(), vol 7416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32060-6_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-32060-6_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32059-0
Online ISBN: 978-3-642-32060-6
eBook Packages: Computer ScienceComputer Science (R0)