Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Rough Sets Based Inequality Rule Learner for Knowledge Discovery

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7413))

Included in the following conference series:

  • 1951 Accesses

Abstract

Traditional rule learners employ equality relations between attributes and values to express decision rules. However, inequality relationships, as supplementary relations to equation, can make up a new function for complex knowledge acquisition. We firstly discuss an extended compensatory model of decision table, and examine how it can simultaneously express both equality and inequality relationships of attributes and values. In order to cope with large-scale compensatory decision table, we propose a scalable inequality rule leaner, which initially compresses the input spaces of attribute value pairs. Example and experimental results show that the proposed learner can generate compact rule sets that maintain higher classification accuracies than equality rule learners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Skowron, A.: Extracting laws from decision tables: a rough set approach. Computational Intelligence 11(2), 371–388 (2007)

    Article  MathSciNet  Google Scholar 

  2. Ruckert, U., De Raedt, L.: An experimental evaluation of simplicity in rule learning. Artificial Intelligence 172(1), 19–28 (2008)

    Article  Google Scholar 

  3. Grzymala-Busse, J., Rzasa, W.: A Local Version of the MLEM2 Algorithm for Rule Induction. Fundamenta Informaticae 100(1), 99–116 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Wang, G.: Rough Set Based Uncertain Knowledge Expressing and Processing. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 11–18. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Janssen, F., Furnkranz, J.: On the quest for optimal rule learning heuristics. Machine Learning 78(3), 343–379 (2010)

    Article  Google Scholar 

  6. Kurgan, L.A., Cios, K.J., Dick, S.: Highly scalable and robust rule learner: Performance evaluation and comparison. IEEE Transactions On Systems Man and Cybernetics 36, 32–53 (2006)

    Article  Google Scholar 

  7. Blaszczynski, J., Slowinski, R., Szelag, M.: Sequential covering rule induction algorithm for variable consistency rough set approaches. Information Sciences (2010)

    Google Scholar 

  8. Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Information Sciences 177(1), 41–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cios, K.J., Kurgan, L.A.: CLIP4: Hybrid inductive machine learning algorithm that generates inequality rules. Information Sciences 163(1-3), 37–83 (2004)

    Article  Google Scholar 

  10. Liu, Y., Bai, G., Feng, B.: On mining rules that involve inequalities from decision table. In: 7th IEEE International Conference on Cognitive Informatics, pp. 255–260. IEEE (2008)

    Google Scholar 

  11. Yao, Y., Zhou, B., Chen, Y.: Interpreting Low and High Order Rules: A Granular Computing Approach. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 371–380. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml

  13. Kurgan, L.A., Cios, K.J.: CAIM discretization algorithm. IEEE Transactions on Data and Knowldge Engineering 16(2), 145–153 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Bai, G., Zhou, Q., Rakus-Andersson, E. (2012). Rough Sets Based Inequality Rule Learner for Knowledge Discovery. In: Yao, J., et al. Rough Sets and Current Trends in Computing. RSCTC 2012. Lecture Notes in Computer Science(), vol 7413. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32115-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32115-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32114-6

  • Online ISBN: 978-3-642-32115-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics