Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Differential Operator Approach to Equational Differential Invariants

(Invited Paper)

  • Conference paper
Interactive Theorem Proving (ITP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7406))

Included in the following conference series:

Abstract

Hybrid systems, i.e., dynamical systems combining discrete and continuous dynamics, have a complete axiomatization in differential dynamic logic relative to differential equations. Differential invariants are a natural induction principle for proving properties of the remaining differential equations. We study the equational case of differential invariants using a differential operator view. We relate differential invariants to Lie’s seminal work and explain important structural properties resulting from this view. Finally, we study the connection of differential invariants with partial differential equations in the context of the inverse characteristic method for computing differential invariants.

This material is based upon work supported by the National Science Foundation under NSF CAREER Award CNS-1054246, NSF EXPEDITION CNS-0926181, and under Grant No. CNS-0931985.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)

    Article  MATH  Google Scholar 

  2. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer (1992)

    Google Scholar 

  4. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comput. 5(1/2), 29–35 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, 2nd edn., vol. 19. AMS (2010)

    Google Scholar 

  6. Gentzen, G.: Untersuchungen über das logische Schließen. II. Math. Zeit. 39(3), 405–431 (1935)

    Article  MathSciNet  Google Scholar 

  7. Grigor’ev, D.Y.: Complexity of Quantifier Elimination in the Theory of Ordinary Differential Equations. In: Davenport, J.H. (ed.) ISSAC 1987 and EUROCAL 1987. LNCS, vol. 378, pp. 11–25. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  8. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta, Malik [9], pp. 190–203

    Google Scholar 

  9. Gupta, A., Malik, S. (eds.): CAV 2008. LNCS, vol. 5123. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  10. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer (1977)

    Google Scholar 

  11. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer Society, Los Alamitos (1996)

    Google Scholar 

  12. Hilbert, D.: Über die Theorie der algebraischen Formen. Math. Ann. 36(4), 473–534 (1890)

    Article  MathSciNet  MATH  Google Scholar 

  13. Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia. IEEE Computer Society (2012)

    Google Scholar 

  14. Lie, S.: Über Differentialinvarianten, vol. 6. Teubner (1884); English Translation: Mr. Ackerman (1975); Sophus Lie’s 1884 Differential Invariant Paper. Math. Sci. Press, Brookline, Mass.: (1884)

    Google Scholar 

  15. Lie, S.: Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen. Teubner, Leipzig (1893)

    Book  Google Scholar 

  16. Lie, S.: Über Integralinvarianten und ihre Verwertung für die Theorie der Differentialgleichungen. Leipz. Berichte 49, 369–410 (1897)

    Google Scholar 

  17. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer (1993)

    Google Scholar 

  18. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  21. Platzer, A.: The complete proof theory of hybrid systems. In: LICS [13]

    Google Scholar 

  22. Platzer, A.: Logics of dynamical systems (invited tutorial). In: LICS [13]

    Google Scholar 

  23. Platzer, A.: The structure of differential invariants and differential cut elimination. In: Logical Methods in Computer Science (to appear, 2012)

    Google Scholar 

  24. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints. In: Gupta, Malik [9], pp. 176–189

    Google Scholar 

  25. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints. CAV 2008 35(1), 98–120 (2009); Special issue for selected papers from CAV 2008

    Article  MATH  Google Scholar 

  26. Platzer, A., Clarke, E.M.: Formal Verification of Curved Flight Collision Avoidance Maneuvers: A Case Study. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 547–562. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Platzer, A., Quesel, J.-D., Rümmer, P.: Real World Verification. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 485–501. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  28. Prajna, S., Jadbabaie, A.: Safety Verification of Hybrid Systems Using Barrier Certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  29. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic safety verification using barrier certificates. IEEE T. Automat. Contr. 52(8), 1415–1429 (2007)

    Article  MathSciNet  Google Scholar 

  30. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. Form. Methods Syst. Des. 32(1), 25–55 (2008)

    Article  MATH  Google Scholar 

  31. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)

    MATH  Google Scholar 

  32. Zeidler, E. (ed.): Teubner-Taschenbuch der Mathematik. Teubner (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Platzer, A. (2012). A Differential Operator Approach to Equational Differential Invariants. In: Beringer, L., Felty, A. (eds) Interactive Theorem Proving. ITP 2012. Lecture Notes in Computer Science, vol 7406. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32347-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32347-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32346-1

  • Online ISBN: 978-3-642-32347-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics