Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

We study the problem of finding a small sparse cut in an undirected graph. Given an undirected graph G = (V,E) and a parameter k ≤ |E|, the small sparsest cut problem is to find a set S ⊆ V with minimum conductance among all sets with volume at most k. Using ideas developed in local graph partitioning algorithms, we obtain the following bicriteria approximation algorithms for the small sparsest cut problem:

  • If there is a set U ⊆ V with conductance φ and vol(U) ≤ k, then there is a polynomial time algorithm to find a set S with conductance \(O(\sqrt{\phi/\epsilon})\) and vol(S) ≤ k 1 + ε for any ε > 1/k.

  • If there is a set U ⊆ V with conductance φ and vol(U) ≤ k, then there is a polynomial time algorithm to find a set S with conductance \(O(\sqrt{\phi \log k / \epsilon})\) and vol(S) ≤ (1 + ε)k for any ε > 2logk/k.

These algorithms can be implemented locally using truncated random walk, with running time almost linear to k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Milman, V.: Isoperimetric inequalities for graphs, and superconcentrators. Journal of Combinatorial Theory, Series B 38(1), 73–88 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, R., Chung, F.R.K., Lang, K.J.: Local graph partitioning using PageRank vectors. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 475–486 (2006)

    Google Scholar 

  3. Anderson, R., Peres, Y.: Finding sparse cuts locally using evolving sets. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 235–244 (2009)

    Google Scholar 

  4. Arora, S., Barak, B., Steurer, D.: Subexponential algorithms for unique games and related problems. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 563–572 (2010)

    Google Scholar 

  5. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pp. 222–231 (2004)

    Google Scholar 

  6. Bansal, N., Feige, U., Krauthgamer, R., Makarychev, K., Nagarajan, V., Naor, J., Schwartz, R.: Min-max graph partitioning and small set expansion. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 17–26 (2011)

    Google Scholar 

  7. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis, pp. 195–199. Princeton University Press (1970)

    Google Scholar 

  8. Chung, F.: A Local Graph Partitioning Algorithm Using Heat Kernel Pagerank. In: Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp. 62–75. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Horry, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bulletin of the American Mathematical Society 43(4), 439–561 (2006)

    Article  Google Scholar 

  10. Lee, J.R., Oveis Gharan, S., Trevisan, L.: Multi-way spectral partitioning and higher-order Cheeger inequalities. In: Proceedings of the 44th Annual Symposium on Theory of Computing (STOC), pp. 1117–1130 (2012)

    Google Scholar 

  11. Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorem and their use in designing approximation algorithms. Journal of the ACM 46(6), 787–832 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Louis, A., Raghavendra, P., Tetali, P., Vempala, S.: Many sparse cuts via higher eigenvalues. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC), pp. 1131–1140 (2012)

    Google Scholar 

  13. Lovász, L., Kannan, R.: Faster mixing via average conductance. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC), pp. 282–287 (1999)

    Google Scholar 

  14. Lovász, L., Simonovits, M.: The mixing time of Markov chains, an isoperimetric inequality, and computing the volume. In: Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 346–354 (1990)

    Google Scholar 

  15. Raghavendra, P., Steurer, D.: Graph expansion and the unique games conjecture. In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing (STOC), pp. 755–764 (2010)

    Google Scholar 

  16. Raghavendra, P., Steurer, D., Tetali, P.: Approximations for the isoperimetric and spectral profile of graphs and related parameters. In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing (STOC), pp. 631–640 (2010)

    Google Scholar 

  17. Raghavendra, P., Steurer, D., Tulsiani, M.: Reductions between expansion problems. In: Proceedings of the 27th Annual IEEE Conference on Computational Complexity, CCC (2012)

    Google Scholar 

  18. Spielman, D.A., Teng, S.-H.: A local clustering algorithm for massive graphs and its applications to nearly-linear time graph partitioning. CoRR, abs/0809.3232 (2008)

    Google Scholar 

  19. Orecchia, L., Sachdeva, S., Vishnoi, N.K.: Approximating the exponential, the Lanczos method, and an \(\tilde{O}(m)\)-time spectral algorithm for balanced separator. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC), pp. 1141–1160 (2012)

    Google Scholar 

  20. Oveis Gharan, S., Trevisan, L.: Approximating the expansion profile and almost optimal local graph clustering. CoRR, abs/1204.2021 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kwok, T.C., Lau, L.C. (2012). Finding Small Sparse Cuts by Random Walk. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2012 2012. Lecture Notes in Computer Science, vol 7408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32512-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32512-0_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32511-3

  • Online ISBN: 978-3-642-32512-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics