Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A New Method for Conceptual Classification of Multi-label Texts in Web Mining Based on Ontology

  • Conference paper
Signal Processing and Information Technology (SPIT 2011)

Abstract

This paper presents a new inductive learning method for conceptual classification of multi-label texts in web mining based on ontology through Term Space Reduction (TSR) and through using mutual information measure. Laboratory results show the presented method has high precision in compare to existing methods of SVM, Find Similar, Naïve Bayes Nets, and Decision Trees. It should be noted that break–even point is used in micro–averaging for appropriate classification of data complex entitled "Reuters–21578 Apte Split".

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, Y., Pedersen, J.O.: A Comparative Study on Feature Selection in Text Categorization. In: Proceedings of the 14th International Conference on Machine Learning, Nashville, USA, pp. 412–420 (1997)

    Google Scholar 

  2. Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing Survey 34(1), 1–47 (2002)

    Article  MathSciNet  Google Scholar 

  3. Chang, Y.-C., Chen, S.-M., Liau, C.-J.: A New Inductive Learning Method for Multilabel Text Categorization. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp. 1249–1258. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Sever, H., Gorur, A., Tolun, M.R.: Text Categorization with ILA. In: Yazıcı, A., Şener, C. (eds.) ISCIS 2003. LNCS, vol. 2869, pp. 300–307. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Baker, L.D., McCallum, A.K.: Distributional clustering of words for text classification. In: SIGIR 1998, 21st ACM Int. Conference on Research and Development in Information Retrieval (Melbourne, AU), pp. 96–103 (1998)

    Google Scholar 

  6. Cohen, W.W.: Learning to classify English text with ILP methods. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming, pp. 124–143. IOS Press, Amsterdam (1995)

    Google Scholar 

  7. Dumais, S., Platt, J., Heckerman, D.: Inductive Learning Algorithms and Representations for Text Categorization (1995)

    Google Scholar 

  8. Yang, Y.: An Evaluation of Statistical Approaches to Text Categorization. Information Retrieval 1 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Khani, M., Naji, H.R., Malakooti, M. (2012). A New Method for Conceptual Classification of Multi-label Texts in Web Mining Based on Ontology. In: Das, V.V., Ariwa, E., Rahayu, S.B. (eds) Signal Processing and Information Technology. SPIT 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32573-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32573-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32572-4

  • Online ISBN: 978-3-642-32573-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics