Abstract
We study the descriptional complexity of regular languages that are definable by deterministic regular expressions. First, we examine possible blow-ups when translating between regular expressions, deterministic regular expressions, and deterministic automata. Then we give an overview of the closure properties of these languages under various language-theoretic operations and we study the descriptional complexity of applying these operations. Our main technical result is a general property that implies that the blow-up when translating a DFA to an equivalent deterministic expression can be exponential.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bex, G.J., Gelade, W., Martens, W., Neven, F.: Simplifying XML Schema: effortless handling of nondeterministic regular expressions. In: SIGMOD (2009)
Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Information and Computation 142(2), 182–206 (1998)
Câmpeanu, C., Culik, K., Salomaa, K., Yu, S.: State Complexity of Basic Operations on Finite Languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)
Caron, P., Han, Y.-S., Mignot, L.: Generalized One-Unambiguity. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 129–140. Springer, Heidelberg (2011)
Ehrenfeucht, A., Zeiger, H.: Complexity measures for regular expressions. JCSS 12(2), 134–146 (1976)
Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular expressions: new results and open problems. In: JALC, pp. 233–256 (2004)
Gelade, W., Idziaszek, T., Martens, W., Neven, F.: Simplifying XML Schema: Single-type approximations of regular tree languages. In: PODS (2010)
Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular expressions. In: TOCL, pp. 4:1–4:19 (2012)
Gruber, H., Holzer, M.: Finite Automata, Digraph Connectivity, and Regular Expression Size. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 39–50. Springer, Heidelberg (2008)
Gruber, H., Holzer, M.: Tight Bounds on the Descriptional Complexity of Regular Expressions. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 276–287. Springer, Heidelberg (2009)
Gruber, H., Johannsen, J.: Optimal Lower Bounds on Regular Expression Size Using Communication Complexity. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 273–286. Springer, Heidelberg (2008)
Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (2007)
Jirásek, J., Jirásková, G., Szabari, A.: State Complexity of Concatenation and Complementation of Regular Languages. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 178–189. Springer, Heidelberg (2005)
Jirásková, G.: On the State Complexity of Complements, Stars, and Reversals of Regular Languages. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 431–442. Springer, Heidelberg (2008)
Kintala, C., Wotschke, D.: Amounts of nondeterminism in finite automata. Acta Informatica 13, 199–204 (1980)
Losemann, K.: Boolesche Operationen auf deterministischen regulären Ausdrücken. Master’s thesis, TU Dortmund (October 2010)
Martens, W., Niewerth, M., Schwentick, T.: Schema design for XML repositories: Complexity and tractability. In: PODS (2010)
Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. In: IJFCS, pp. 145–159 (2002)
Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular languages. In: TCS, pp. 315–329 (2004)
Yu, S.: State complexity of regular languages. In: JALC, p. 221 (2001)
Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. In: TCS, pp. 315–328 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Losemann, K., Martens, W., Niewerth, M. (2012). Descriptional Complexity of Deterministic Regular Expressions. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_56
Download citation
DOI: https://doi.org/10.1007/978-3-642-32589-2_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32588-5
Online ISBN: 978-3-642-32589-2
eBook Packages: Computer ScienceComputer Science (R0)