Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Descriptional Complexity of Deterministic Regular Expressions

  • Conference paper
Mathematical Foundations of Computer Science 2012 (MFCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7464))

Abstract

We study the descriptional complexity of regular languages that are definable by deterministic regular expressions. First, we examine possible blow-ups when translating between regular expressions, deterministic regular expressions, and deterministic automata. Then we give an overview of the closure properties of these languages under various language-theoretic operations and we study the descriptional complexity of applying these operations. Our main technical result is a general property that implies that the blow-up when translating a DFA to an equivalent deterministic expression can be exponential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bex, G.J., Gelade, W., Martens, W., Neven, F.: Simplifying XML Schema: effortless handling of nondeterministic regular expressions. In: SIGMOD (2009)

    Google Scholar 

  2. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Information and Computation 142(2), 182–206 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Câmpeanu, C., Culik, K., Salomaa, K., Yu, S.: State Complexity of Basic Operations on Finite Languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Caron, P., Han, Y.-S., Mignot, L.: Generalized One-Unambiguity. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 129–140. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Ehrenfeucht, A., Zeiger, H.: Complexity measures for regular expressions. JCSS 12(2), 134–146 (1976)

    MathSciNet  MATH  Google Scholar 

  6. Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular expressions: new results and open problems. In: JALC, pp. 233–256 (2004)

    Google Scholar 

  7. Gelade, W., Idziaszek, T., Martens, W., Neven, F.: Simplifying XML Schema: Single-type approximations of regular tree languages. In: PODS (2010)

    Google Scholar 

  8. Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular expressions. In: TOCL, pp. 4:1–4:19 (2012)

    Google Scholar 

  9. Gruber, H., Holzer, M.: Finite Automata, Digraph Connectivity, and Regular Expression Size. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 39–50. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Gruber, H., Holzer, M.: Tight Bounds on the Descriptional Complexity of Regular Expressions. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 276–287. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Gruber, H., Johannsen, J.: Optimal Lower Bounds on Regular Expression Size Using Communication Complexity. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 273–286. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (2007)

    Google Scholar 

  13. Jirásek, J., Jirásková, G., Szabari, A.: State Complexity of Concatenation and Complementation of Regular Languages. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 178–189. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Jirásková, G.: On the State Complexity of Complements, Stars, and Reversals of Regular Languages. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 431–442. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Kintala, C., Wotschke, D.: Amounts of nondeterminism in finite automata. Acta Informatica 13, 199–204 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Losemann, K.: Boolesche Operationen auf deterministischen regulären Ausdrücken. Master’s thesis, TU Dortmund (October 2010)

    Google Scholar 

  17. Martens, W., Niewerth, M., Schwentick, T.: Schema design for XML repositories: Complexity and tractability. In: PODS (2010)

    Google Scholar 

  18. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. In: IJFCS, pp. 145–159 (2002)

    Google Scholar 

  19. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular languages. In: TCS, pp. 315–329 (2004)

    Google Scholar 

  20. Yu, S.: State complexity of regular languages. In: JALC, p. 221 (2001)

    Google Scholar 

  21. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. In: TCS, pp. 315–328 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Losemann, K., Martens, W., Niewerth, M. (2012). Descriptional Complexity of Deterministic Regular Expressions. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32589-2_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32588-5

  • Online ISBN: 978-3-642-32589-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics