Abstract
Reconstruction of gene networks has become an important activity in Systems Biology. The potential for better methods of drug discovery and of disease diagnosis hinge upon our understanding of the interaction networks between the genes. Evolutionary methods are proving to be successful in such problems and a number of such methods have been proposed. However, all these methods are based on processing of genotypic information. We have presented an evolutionary algorithm for reconstructing gene networks from expression data using phenotypic interactions, thereby avoiding the need for an explicit objective function. Specifically, we have also extended the basic phenomic algorithm to perform multiobjective optimization for gene network reconstruction. We have applied this novel algorithm to the yeast sporulation dataset and validated it by comparing the results to the links found between genes of the yeast genome at the SGD database.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schulze, A., Downward, J.: Navigating gene expression using microarrays - a technology review. Nature Cell Biology 3, E190–E195 (2001)
Soinov, L.A., Krestyaninova, M.A., Brazma, A.: Towards reconstruction of gene networks from expression data by supervised learning. Genome Biology 4(1), R6 (2003)
Bansal, M., Belcastro, V., Impiombato, A.A., di Bernardo, D.: How to infer gene networks from expression profiles. Mol. Syst. Biol. 3, 78 (2007), doi:10.1038/msb4100120
D’haeseleer, P., Liang, S., Somogyi, R.: Gene expression analysis and genetic network modelling: Tutorial. In: Pacific Symposium on Biocomputing (1999)
Siegal, M.L., Promislow, D.E.L., Bergman, A.: Functional and evolutionary inference in gene networks: does topology matter? Genetica 129(1), 83–103 (2007)
D’Souza, R.G.L., Chandra Sekaran, K., Kandasamy, A.: A phenomic algorithm for reconstruction of gene networks. In: IV International Conference on Computational Intelligence and Cognitive Informatics, CICI 2007, pp. 53–58. WASET, Venice (2007)
D’Souza, R.G.L., Chandra Sekaran, K., Kandasamy, A.: Reconstruction of gene networks using phenomic algorithms. Intl. Journal of Artificial Intelligence Applications (IJAIA) 1(2), 1–11 (2010), doi:10.5121/ijaia.2010.1201, ISSN: 0976-2191
Spieth, C., Streichert, F., Speer, N., Zell, A.: Optimizing Topology and Parameters of Gene Regulatory Network Models from Time-Series Experiments. In: Deb, K., Tari, Z. (eds.) GECCO 2004, Part I. LNCS, vol. 3102, pp. 461–470. Springer, Heidelberg (2004)
Chu, S., DeRisi, J., Eisen, M., et al.: The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998)
Somogyi, R., Fuhrman, S., Askenazi, M., Wuensche, A.: The gene expression matrix: towards the extraction of genetic network architectures. In: Proc. of Second World Cong. of Nonlinear Analysts (WCNA 1996), vol. 30(3), pp. 1815–1824 (1997)
Christley, S., Nie, Q., Xie, X.: Incorporating existing network information into gene network inference. PLoS ONEÂ 4(8), e6799 (2009), doi:10.1371/journal.pone.0006799
Liu, B., de la Fuente, A., Hoeschele, I.: Gene network inference via structural equation modeling in genetical genomics experiments. Genetics 178, 1763–1776 (2008)
Qian, L., Wang, H., Dougherty, E.R.: Inference of noisy nonlinear differential equation models for gene regulatory networks using genetic programming and Kalman filtering. IEEE Trans. on Signal Processing 56(7), 3327–3339 (2008)
Numata, K., Imoto, S., Miyano, S.: A structure learning algorithm for inference of gene networks from microarray gene expression data using Bayesian networks. In: Proc. of the 7th IEEE Intl. Conf. on Bioinfo. and Bioengg. 2007 (BIBE 2007), pp. 1280–1284 (2007)
Ko, Y., Zhai, C., Rodriguez-Zas, S.: Inference of gene pathways using mixture Bayesian networks. BMC Systems Biology 3, 54 (2009), doi:10.1186/1752-0509-3-54
Noman, N., Iba, H.: Reverse engineering genetic networks using evolutionary computation. Genome Informatics 16(2), 205–214 (2005)
Savageau, M.A.: Power-law formalism: a canonical nonlinear approach to modelling and analysis. In: Proc. of the World Congress of Nonlinear Analysts 1992, pp. 3323–3334 (1995)
Hirose, O., Yoshida, R., Imoto, S., Yamaguchi, R., Higuchi, T., Charnock-Jones, D.S., Print, C., Miyano, S.: Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics 24(7), 932–942 (2008), doi:10.1093/bioinformatics/btm639
Dougherty, J., Tabus, I., Astola, J.: Inference of gene regulatory networks based on a universal minimum description length. EURASIP Journal on Bioinformatics and Systems Biology (2008), doi:10.1155/2008/482090
Chaitankar, V., Ghosh, P., Perkins, E.J., Gong, P., Deng, Y., Zhang, C.: A novel gene network inference algorithm using predictive minimum description length approach. BMC Syst. Biol. 4(suppl. 1) (2010), doi:10.1186/1752-0509-4-S1-S7
Kentzoglanakis, K., Poole, M.: Gene network inference using a swarm intelligence framework. In: Proc. of the 11th Annual Conf. Companion on Genetic and Evolutionary Computation Conference (GECCO 2009), pp. 2709–2712 (2009)
Xu, R., Wunsch, D.C., Frank, R.L.: Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization. IEEE/ACM Trans. on Computational Biology and Bioinformatics 4(4), 681–692 (2007)
Zarnegar, A., Vamplew, P., Stranieri, A.: Inference of gene expression networks using memetic gene expression programming. In: Mans, B. (ed.) Proc. of the 32nd Australasian Computer Science Conf. (ACSC 2009), Conferences in Research and Practice in Information Technology (CRPIT), vol. 91 (2009)
Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evolutionary Computation 8(2), 125–147 (2000)
Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)
Deb, K., Reddy, A.R.: Classification of two-class cancer data reliably using evolutionary algorithms. Publ. of Kanpur Genetic Algorithms Lab., India, Report No. 2003001 (2003)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Computation 6(2), 182–197 (2002)
Kumar, P.K., Sharath, S., D’Souza, R.G., Chandra Sekaran, K.: Memetic NSGA—A multi-objective genetic algorithm for classification of microarray data. In: 15th Intl. Conf. on Advanced Computing and Communications, ADCOM, pp. 75–80. IEEE (2007)
Jin, Y., Sendhoff, B.: Pareto-based multiobjective machine learning: An overview and case studies. IEEE Trans. on Systems, Man, and Cybernetics 38(3), 397–415 (2008)
Kupiec, M., Ayers, B., Esposito, R.E., Mitchell, A.P.: The molecular and cellular biology of the yeast Saccharomyces. Cold Spring Harbour, 889–1036 (1997)
SGD project: Saccharomyces genome database (2007), http://www.yeastgenome.org/ (September 15, 2007)
Spieth, C., Streichert, F., Speer, N., Zell, A.: Multi-Objective Model Optimization for Inferring Gene Regulatory Networks. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 607–620. Springer, Heidelberg (2005)
Spieth, C., Streichert, F., Speer, N., Zell, A.: A memetic inference method for gene regulatory networks based on s-systems. In: Proc. of Congress on Evolutionary Computation (CEC 2004), Proc. Part I, pp. 152–157. IEEE Press (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
D’Souza, R.G.L., Sekaran, K.C., Kandasamy, A. (2012). A Multiobjective Phenomic Algorithm for Inference of Gene Networks. In: Suzuki, J., Nakano, T. (eds) Bio-Inspired Models of Network, Information, and Computing Systems. BIONETICS 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32615-8_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-32615-8_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32614-1
Online ISBN: 978-3-642-32615-8
eBook Packages: Computer ScienceComputer Science (R0)