Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Production Rule-Based Framework for Causal and Epistemic Reasoning

  • Conference paper
Rules on the Web: Research and Applications (RuleML 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7438))

Abstract

Action theories are an important field of knowledge representation for reasoning about change and causality in dynamic domains. In practical implementations agents often have incomplete knowledge about the environment and need to acquire information at runtime through sensing, the basic ontology of action theories needs to be extended with epistemic notions. This paper presents a production system that can perform online causal, temporal and epistemic reasoning based on the Event Calculus and on an epistemic extension of the latter. The framework implements the declarative semantics of the underlying logic theories in a forward-chaining rule-based system. This way, it combines the capacity of highly expressive formalisms to represent a multitude of commonsense phenomena with the efficiency of rule-based reasoning systems, which typically lack real semantics and high-level structures.

This work is partially supported by the ITEA2 09031 A2Nets and 10035 PREDYKOT projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Levesque, H., Reiter, R.: High-level Robotic Control: Beyond Planning. A Position Paper. In: AIII 1998 Spring Symposium: Integrating Robotics Research: Taking the Next Big Leap (1998)

    Google Scholar 

  2. Van Harmelen, F., Lifschitz, V., Porter, B.: Handbook of Knowledge Representation. Elsevier Science, San Diego (2007)

    Google Scholar 

  3. Scherl, R.B., Levesque, H.J.: Knowledge, action, and the frame problem. Artificial Intelligence 144(1-2), 1–39 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Thielscher, M.: Representing the Knowledge of a Robot. In: KR 2000: Principles of Knowledge Representation and Reasoning, pp. 109–120 (2000)

    Google Scholar 

  5. Lobo, J., Mendez, G., Taylor, S.R.: Knowledge and the action description language A. Theory and Practice of Logic Programming 1(2), 129–184 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Patkos, T., Plexousakis, D.: Reasoning with Knowledge, Action and Time in Dynamic and Uncertain Domains. In: Proceedings of the 21st International Joint Conference on Artifical Intelligence, IJCAI 2009, pp. 885–890 (2009)

    Google Scholar 

  7. Chesani, F., Mello, P., Montali, M., Torroni, P.: A logic-based, reactive calculus of events. Fundamenta Informaticae 105, 135–161 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Kowalski, R., Sergot, M.: A Logic-based Calculus of Events. New Generation Computing 4(1), 67–95 (1986)

    Article  Google Scholar 

  9. Mueller, E.: Commonsense Reasoning, 1st edn. Morgan Kaufmann (2006)

    Google Scholar 

  10. Patkos, T., Plexousakis, D.: Efficient epistemic reasoning in partially observable dynamic domains using hidden causal dependencies. In: NRAC 2011 - 9th International Workshop on Non-Monotonic Reasoning, Action and Change, pp. 55–62 (2011)

    Google Scholar 

  11. Chittaro, L., Montanari, A.: Efficient Temporal Reasoning in the Cached Event Calculus. Computational Intelligence 12, 359–382 (1996)

    Article  MathSciNet  Google Scholar 

  12. Dimopoulos, Y., Kakas, A.C., Michael, L.: Reasoning About Actions and Change in Answer Set Programming. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 61–73. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Riboni, D., Bettini, C.: Owl 2 modeling and reasoning with complex human activities. Pervasive and Mobile Computing 7, 379–395 (2011)

    Article  Google Scholar 

  14. Chen, L., Nugent, C., Mulvenna, M., Finlay, D., Hong, X., Poland, M.: A Logical Framework for Behaviour Reasoning and Assistance in a Smart Home. International Journal of Assistive Robotics and Mechatronics 9 (2008)

    Google Scholar 

  15. Sadri, F.: Intention recognition with event calculus graphs. In: Web Intelligence and Intelligent Agent Technology, pp. 386–391 (2010)

    Google Scholar 

  16. Kunze, L., Dolha, M.E., Beetz, M.: Logic programming with simulation-based temporal projection for everyday robot object manipulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), pp. 3172–3178 (2011)

    Google Scholar 

  17. Patkos, T., Plexousakis, D.: Epistemic reasoning for ambient intelligence. In: 3rd International Conference on Agents and Artificial Intelligence (ICAART), pp. 242–248 (2011)

    Google Scholar 

  18. Kowalski, R., Sadri, F.: An Agent Language with Destructive Assignment and Model-Theoretic Semantics. In: Dix, J., Leite, J., Governatori, G., Jamroga, W. (eds.) CLIMA XI. LNCS, vol. 6245, pp. 200–218. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Shanahan, M.: The ramification problem in the event calculus. In: 16th International Joint Conference on Artificial Intelligence (IJCAI), pp. 140–146 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Patkos, T., Chibani, A., Plexousakis, D., Amirat, Y. (2012). A Production Rule-Based Framework for Causal and Epistemic Reasoning. In: Bikakis, A., Giurca, A. (eds) Rules on the Web: Research and Applications. RuleML 2012. Lecture Notes in Computer Science, vol 7438. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32689-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32689-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32688-2

  • Online ISBN: 978-3-642-32689-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics