Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

The motivation of the paper is to introduce agent-based technology in the business process simulation. As in other cases, such simulation needs sufficient input data. However, in the case of business systems, real business data are not always available. Therefore, multi-agent systems often operate with randomly (resp. pseudo randomly) generated parameters. This method can also represent unpredictable phenomena. The core of the paper is to introduce the control loop model methodology in JADE business process simulation implementation. At the end of this paper the analysis of agent-based simulation outputs through process mining methods and methods for analysis of agents’ behavior in order to verify the correctness of used methodology is presented. The business process simulation inputs are randomly generated using the normal distribution. The results obtained show that using random number generation function with normal distribution can lead to the correct output data and therefore can be used to simulate real business processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van der Aalst, W.M.P.: Process Mining. Discovery, Conformance and Enhancement of Business Processes, p. 352. Springer, Heidelberg (2011) ISBN: 978-3-642-19344-6

    MATH  Google Scholar 

  2. Barnett, M.: Modeling & Simulation in Business Process Management. Gensym Corporation, pp. 6–7 (2003), http://bptrends.com/publicationfiles/11-03%20WP%20Mod%20Simulation%20of%20BPM%20-%20Barnett-1.pdf (accessed January 16, 2012)

  3. Bellifemine, F., Caire, G., Trucco, T.: Jade Programmer’s Guide. Java Agent Development Framework (2010), http://jade.tilab.com/doc/programmersguide.pdf (accessed January 16, 2012)

  4. De Snoo, D.: Modelling planning processes with TALMOD. Master’s thesis, University of Groningen (2005)

    Google Scholar 

  5. Dyer, D.W.: Uncommons Maths - Random number generators, probability distributions, combinatorics and statistics for Java (2010), http://maths.uncommons.org (accessed January 16, 2012)

  6. Foundation for Intelligent Physical Agents (FIPA 2002) FIPA Contract Net Interaction Protocol. In Specification, FIPA, http://www.fipa.org/specs/fipa00029/SC00029H.pdf

  7. Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslovak Mathematical Journal 25, 619–633 (1975)

    MathSciNet  Google Scholar 

  8. Guo, A., Siegelmann, H.: Time-Warped Longest Common Subsequence Algorithm for Music Retrieval, pp. 258–261 (2004)

    Google Scholar 

  9. Hillston, J.: Random Variables and Simulation (2003), http://www.inf.ed.ac.uk/teaching/courses/ms/notes/note13.pdf (accessed January 16, 2012)

  10. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J. ACM 24, 664–675 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jennings, N.R., Faratin, P., Norman, T.J., O’Brien, P., Odgers, B.: Autonomous agents for business process management. Int. Journal of Applied Artificial Intelligence 14, 145–189 (2000)

    Article  Google Scholar 

  12. Liu, Y., Trivedi, K.S.: Survivability Quantification: The Analytical Modeling Approach. Department of Electrical and Computer Engineering, Duke University, Durham, NC, U.S.A. (2011), http://people.ee.duke.edu/~kst/surv/IoJP.pdf (accessed January 16, 2012)

  13. Macal, C.M., North, J.N.: Tutorial on Agent-based Modeling and Simulation. In: Proceedings: 2005 Winter Simulation Conference (2005)

    Google Scholar 

  14. Scheer, A.-W., Nüttgens, M.: ARIS Architecture and Reference Models for Business Process Management. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 376–389. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Slaninova, K., Kocyan, T., Martinovic, J., Drazdilova, P., Snasel, V.: Dynamic Time Warping in Analysis of Student Behavioral Patterns. In: Proceedings of DATESO 2012, pp. 49–59 (2012)

    Google Scholar 

  16. Spisak, M., Sperka, R.: Financial Market Simulation Based on Intelligent Agents - Case Study. Journal of Applied Economic Sciences VI(3(17)), 249–256 (2011) Print-ISSN 1843-6110

    Google Scholar 

  17. Vymetal, D., Sperka, R.: Agent-based Simulation in Decision Support Systems. In: Distance Learning, Simulation and Communication 2011. Proceedings, pp. 978–980 (2011) ISBN 978-80-7231-695-3

    Google Scholar 

  18. Vymetal, D., Spisak, M., Sperka, R.: An Influence of Random Number Generation Function to Multiagent Systems. In: Proceedings: Agent and Multi-Agent Systems: Technology and Applications 2012, Dubrovnik, Croatia (2012)

    Google Scholar 

  19. Wooldridge, M.: Multi Agent Systems: An Introduction to, 2nd edn. John Wiley & Sons Ltd., Chichester (2009)

    Google Scholar 

  20. Yuan, J., Madsen, O.S.: On the choice of random wave simulation in the surf zone processes. Coastal Engineering (2010), http://censam.mit.edu/publications/ole3.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Šperka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Šperka, R., Spišák, M., Slaninová, K., Martinovič, J., Dráždilová, P. (2013). Control Loop Model of Virtual Company in BPM Simulation. In: Snášel, V., Abraham, A., Corchado, E. (eds) Soft Computing Models in Industrial and Environmental Applications. Advances in Intelligent Systems and Computing, vol 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32922-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32922-7_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32921-0

  • Online ISBN: 978-3-642-32922-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics