Abstract
We optimize the communication (and, indirectly, computation) complexity of two-party secure function evaluation (SFE). We propose a new approach, which relies on the information-theoretic (IT) Garbled Circuit (GC), which is more efficient than Yao’s GC on shallow circuits. When evaluating a large circuit, we “slice” it into thin layers and evaluate them with IT GC. Motivated by the client-server setting, we propose two variants of our construction: one for semi-honest model (relatively straightforward), and one secure against a semi-honest server and covert client (more technically involved). One of our new building blocks, String-selection Oblivious Transfer (SOT), may be of independent interest.
Our approach offers asymptotic improvement over the state-of-the-art GC, both in communication and computation, by a factor logκ, where κ is a security parameter. In practical terms, already for today’s κ ∈ {128,256} our (unoptimized) algorithm offers approximately a factor 2 communication improvement in the semi-honest model, and is only a factor ≈ 1.5 more costly in setting with covert client.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)
Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks and applications. In: Chazelle, B. (ed.) ICS, pp. 45–60. Tsinghua University Press (2011)
Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty Computation with Low Communication, Computation and Interaction via Threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)
Aumann, Y., Lindell, Y.: Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 137–156. Springer, Heidelberg (2007)
Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant number of rounds of interaction. In: 8th ACM Symposium Annual on Principles of Distributed Computing, pp. 201–209. ACM Press (1989)
Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic Encryption and Multiparty Computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)
Cleve, R.: Towards optimal simulations of formulas by bounded-width programs. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC 1990, pp. 271–277. ACM, New York (1990)
Crépeau, C.: Verifiable Disclose for Secrets and Applications (Abstract). In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 150–154. Springer, Heidelberg (1990)
Damgard, I., Pastro, V., Smart, N., and Zakarias, S. Multi-party computation from somewhat homomorphic encryption. Cryptology ePrint Archive, Report 2011/535 (2011), http://eprint.iacr.org/
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM Press (May/June 2009)
Gentry, C., Halevi, S., Smart, N.: Homomorphic evaluation of the aes circuit. Cryptology ePrint Archive, Report 2012/099 (2012), http://eprint.iacr.org/
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM Press (May 1987)
Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-Combiners via Secure Computation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 393–411. Springer, Heidelberg (2008)
Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)
Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with applications to round-efficient secure computation. In: 41st Annual Symposium on Foundations of Computer Science, pp. 294–304. IEEE Computer Society Press (November 2000)
Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure Computation on Committed Inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114. Springer, Heidelberg (2007)
Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31 (1988)
Kiraz, M.S., Schoenmakers, B.: An Efficient Protocol for Fair Secure Two-Party Computation. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 88–105. Springer, Heidelberg (2008)
Kolesnikov, V.: Gate Evaluation Secret Sharing and Secure One-Round Two-Party Computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 136–155. Springer, Heidelberg (2005)
Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008)
Kreuter, B., Shelat, A., Hao Shen, C.: Towards billion-gate secure computation with malicious adversaries. Cryptology ePrint Archive, Report 2012/179 (2012), http://eprint.iacr.org/
Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)
Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. Journal of Cryptology 22(2), 161–188 (2009)
Lindell, Y., Pinkas, B.: Secure Two-Party Computation via Cut-and-Choose Oblivious Transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011)
Lopez-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: 44th Annual ACM Symposium on Theory of Computing. ACM Press (2012)
Myers, S., Sergi, M., Shelat, A.: Threshold fully homomorphic encryption and secure computation. Cryptology ePrint Archive, Report 2011/454 (2011), http://eprint.iacr.org/
Naor, M., Nissim, K.: Communication preserving protocols for secure function evaluation. In: 33rd Annual ACM Symposium on Theory of Computing, pp. 590–599. ACM Press (July 2001)
Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 448–457. ACM-SIAM (January 2001)
Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: ACM Conference on Electronic Commerce, pp. 129–139 (1999)
Nielsen, J. B., Nordholt, P. S., Orlandi, C., Burra, S. S.: A new approach to practical active-secure two-party computation. Cryptology ePrint Archive, Report 2011/091 (2011), http://eprint.iacr.org/
Nielsen, J.B., Orlandi, C.: LEGO for Two-Party Secure Computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009)
Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Computation Is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009)
Shelat, A., Shen, C.-H.: Two-Output Secure Computation with Malicious Adversaries. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer, Heidelberg (2011)
Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kolesnikov, V., Kumaresan, R. (2012). Improved Secure Two-Party Computation via Information-Theoretic Garbled Circuits. In: Visconti, I., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2012. Lecture Notes in Computer Science, vol 7485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32928-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-32928-9_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32927-2
Online ISBN: 978-3-642-32928-9
eBook Packages: Computer ScienceComputer Science (R0)