Abstract
Anonymous authentication schemes such as group signatures and anonymous credentials are important privacy-protecting tools in electronic communications. The only currently known scheme based on assumptions that resist quantum attacks is the group signature scheme by Gordon et al. (ASIACRYPT 2010). We present a generalization of group signatures called anonymous attribute tokens where users are issued attribute-containing credentials that they can use to anonymously sign messages and generate tokens revealing only a subset of their attributes. We present two lattice-based constructions of this new primitive, one with and one without opening capabilities for the group manager. The latter construction directly yields as a special case the first lattice-based group signature scheme offering full anonymity (in the random oracle model), as opposed to the practically less relevant notion of chosen-plaintext anonymity offered by the scheme of Gordon et al. We also extend our scheme to protect users from framing attacks by the group manager, where the latter creates tokens or signatures in the name of honest users. Our constructions involve new lattice-based tools for aggregating signatures and verifiable CCA2-secure encryption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A Practical and Provably Secure Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)
Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC 1996. ACM (1996)
Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS 2009. Dagstuhl Seminar Proceedings, vol. 09001, Schloss Dagstuhl (2009)
Ateniese, G., Song, D., Tsudik, G.: Quasi-Efficient Revocation in Group Signatures. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg (2003)
Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)
Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)
Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get Shorty via Group Signatures without Encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010)
Boyen, X., Delerablée, C.: Expressive Subgroup Signatures. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 185–200. Springer, Heidelberg (2008)
Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)
Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: Formal Definitions, Simplified Requirements, and a Construction Based on General Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)
Boyen, X.: Mesh Signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 210–227. Springer, Heidelberg (2007)
Brands, S., Paquin, C.: U-Prove cryptographic specification v1.0 (2010), http://connect.microsoft.com/site642/Downloads/DownloadDetails.aspx?DownloadID=26953
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: CCS 1993. ACM (1993)
Brands, S.: Rethinking Public Key Infrastructure and Digital Certificates— Building in Privacy. PhD thesis, Eindhoven Institute of Technology (1999)
Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: CCS 2004. ACM (2004)
Bellare, M., Shi, H., Zhang, C.: Foundations of Group Signatures: The Case of Dynamic Groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)
Cramer, R., Damgård, I., Schoenmakers, B.: Proof of Partial Knowledge and Simplified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)
Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM 24(2), 84–88 (1981)
Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)
Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)
Camenisch, J., Lysyanskaya, A.: An Efficient System for Non-transferable Anonymous Credentials with Optional Anonymity Revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)
Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)
Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from lattices. Cryptology ePrint Archive, Report 2012/356 (2012)
Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)
Delerablée, C., Pointcheval, D.: Dynamic Fully Anonymous Short Group Signatures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer, Heidelberg (2006)
Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)
Dov Gordon, S., Katz, J., Vaikuntanathan, V.: A Group Signature Scheme from Lattice Assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010)
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008, ACM (2008)
Danish National IT and Telecom Agency. New digital security models (2011), http://digitaliser.dk/resource/896495
Khader, D.: Attribute based group signatures. Cryptology ePrint Archive, Report 2007/159, version 20080112:115123 (2007)
Klein, P.N.: Finding the closest lattice vector when it’s unusually close. In: SODA 2000. ACM/SIAM (2000)
Kilian, J., Petrank, E.: Identity Escrow. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998)
Loss, D.: Personal communication (2010)
Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym Systems (Extended Abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000)
Lyubashevsky, V.: Lattice-Based Identification Schemes Secure Under Active Attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg (2008)
Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic perspective. The Kluwer International Series in Engineering and Computer Science, vol. 671. Kluwer Academic Publishers (2002)
Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-Based Signatures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011)
Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)
Micciancio, D., Vadhan, S.P.: Statistical Zero-Knowledge Proofs with Efficient Provers: Lattice Problems and More. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003)
Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations. In: STOC 2010. ACM (2010)
Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: STOC 2009. ACM (2009)
Peikert, C.: An Efficient and Parallel Gaussian Sampler for Lattices. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6) (2009)
Regev, O.: On the complexity of lattice problems with polynomial approximation factors. In: The LLL Algorithm, Information Security and Cryptography. Springer (2010)
RISEPTIS. Trust in the information society - a report of the advisory board (2010), http://www.think-trust.eu/general/news/finalreport.html
Rosen, A., Segev, G.: Chosen-Ciphertext Security via Correlated Products. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)
De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: On monotone formula composition of perfect zero-knowledge languages. SIAM J. Comput. 38(4), 1300–1329 (2008)
Shamir, A., Tauman, Y.: Improved Online/Offline Signature Schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Camenisch, J., Neven, G., Rückert, M. (2012). Fully Anonymous Attribute Tokens from Lattices. In: Visconti, I., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2012. Lecture Notes in Computer Science, vol 7485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32928-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-32928-9_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32927-2
Online ISBN: 978-3-642-32928-9
eBook Packages: Computer ScienceComputer Science (R0)