Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Case-Based Aggregation of Preferences for Group Recommenders

  • Conference paper
Case-Based Reasoning Research and Development (ICCBR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7466))

Included in the following conference series:

Abstract

We extend a group recommender system with a case base of previous group recommendation events. We show that this offers a new way of aggregating the predicted ratings of the group members. Using user-user similarity, we align individuals from the active group with individuals from the groups in the cases. Then, using item-item similarity, we transfer the preferences of the groups in the cases over to the group that is seeking a recommendation. The advantage of a case-based approach to preference aggregation is that it does not require us to commit to a model of social behaviour, expressed in a set of formulae, that may not be valid across all groups. Rather, the CBR system’s aggregation of the predicted ratings will be a lazy and local generalization of the behaviours captured by the neighbouring cases in the case base.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bridge, D.G.: The Virtue of Reward: Performance, Reinforcement and Discovery in Case-Based Reasoning. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 1–1. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Golbeck, J.: Generating Predictive Movie Recommendations from Trust in Social Networks. In: Stølen, K., Winsborough, W.H., Martinelli, F., Massacci, F. (eds.) iTrust 2006. LNCS, vol. 3986, pp. 93–104. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Herlocker, J.L.: Understanding and Improving Automated Collaborative Filtering Systems. PhD thesis. University of Minnesota (2000)

    Google Scholar 

  4. Jameson, A., Smyth, B.: Recommendation to Groups. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 596–627. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Kolodner, J.L.: Case-Based Reasoning. Morgan Kaufmann (1993)

    Google Scholar 

  6. Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7(1), 76–80 (2003)

    Article  Google Scholar 

  7. Masthoff, J.: Group modeling: Selecting a sequence of television items to suit a group of viewers. User Modeling and User-Adapted Interaction 14(1), 37–85 (2004)

    Article  Google Scholar 

  8. Quijano-Sánchez, L., Bridge, D., Díaz-Agudo, B., Recio-García, J.A.: A case-based solution to the cold-start problem in group recommenders. In: Díaz Agudo, B., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 342–356. Springer, Heidelberg (2012)

    Google Scholar 

  9. Quijano-Sánchez, L., Recio-García, J.A., Díaz-Agudo, B.: An architecture for developing group recommender systems enhanced by social elements. International Journal of Human-Computer Studies (in press, 2012)

    Google Scholar 

  10. Quijano-Sánchez, L., Recio-García, J.A., Díaz-Agudo, B., Jiménez-Díaz, G.: Happy movie: A group recommender application in facebook. In: 24th International Florida Artificial Intelligence Research Society Conference, FLAIRS 2011 (2011)

    Google Scholar 

  11. Quijano-Sánchez, L., Recio-García, J.A., Díaz-Agudo, B., Jiménez-Díaz, G.: Social factors in group recommender systems. In: ACM-TIST, TIST-2011-01-0013 (in press, 2011)

    Google Scholar 

  12. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An open architecture for collaborative filtering of netnews. In: Procs. of the Conference on Computer Supported Collaborative Work, pp. 175–186 (1994)

    Google Scholar 

  13. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative Filtering Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Schaubhut, N.A.: Technical Brief for the Thomas-Kilmann Conflict Mode Instrument. CPP Research Department (2007)

    Google Scholar 

  15. Thomas, K.W., Kilmann, R.H.: Thomas-Kilmann Conflict Mode Instrument. Tuxedo, N.Y. (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Quijano-Sánchez, L., Bridge, D., Díaz-Agudo, B., Recio-García, J.A. (2012). Case-Based Aggregation of Preferences for Group Recommenders. In: Agudo, B.D., Watson, I. (eds) Case-Based Reasoning Research and Development. ICCBR 2012. Lecture Notes in Computer Science(), vol 7466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32986-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32986-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32985-2

  • Online ISBN: 978-3-642-32986-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics