Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 190))

Abstract

The main drawback of principal component analysis (PCA) especially for applications in high dimensions is that the extracted components are linear combinations of all input variables. To facilitate the interpretability of PCA various sparse methods have been proposed recently. However all these methods might suffer from the influence of outliers present in the data. An algorithm to compute sparse and robust PCA was recently proposed by Croux et al. We compare this method to standard (non-sparse) classical and robust PCA and several other sparse methods. The considered methods are illustrated on a real data example and compared in a simulation experiment. It is shown that the robust sparse method preserves the sparsity and at the same time provides protection against contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Croux, C., Filzmoser, P., Fritz, H.: Robust sparse principal component analysis. Reserach report sm-2011-2, Vienna University of Technology (2011)

    Google Scholar 

  2. Croux, C., Filzmoser, P., Oliveira, M.: Algorithms for projection-pursuit robust principal component analysis. Chemometr. Intel. Lab. 87, 218–225 (2007)

    Article  Google Scholar 

  3. Croux, C., Ruiz-Gazen, A.: High breakdown estimators for principal components: The projection-pursuit approach revisited. J. Multivariate Anal. 95, 206–226 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hettich, S., Bay, S.D.: The UCI KDD archive (1999), http://kdd.ics.uci.edu

  5. Hubert, M., Rousseeuw, P., Vanden Branden, K.: ROBPCA: A new approach to robust principal component analysis. Technometrics 47, 64–79 (2005)

    Article  MathSciNet  Google Scholar 

  6. Jolliffe, I.T., Trendafilov, N.T., Uddin, M.: A modified principal component technique based on the LASSO. J. Comput. Graph. Stat. 12, 531–547 (2003)

    Article  MathSciNet  Google Scholar 

  7. Krzanowski, W.J., Marriott, F.H.C.: Multivariate Analysis, Part 2: Classification, Covariance Structure and Repeated Measurements. Arnold, London (1995)

    MATH  Google Scholar 

  8. Maronna, R.A., Martin, D., Yohai, V.: Robust Statistics: Theory and Methods. Wiley, New York (2006)

    Book  MATH  Google Scholar 

  9. Meng, D., Zhao, Q., Xu, Z.: Improve robustness of sparse PCA by L1-norm maximization. Pattern Recogn. 45(1), 487–497 (2012)

    Article  MATH  Google Scholar 

  10. Shen, H., Huang, J.Z.: Sparse principal component analysis via regularized low rank matrix approximation. J. Multivariate Anal. 99, 1015–1034 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Siebert, J.P.: Vehicle recognition using rule based methods. Turing Institute Research Memorandum TIRM-87-018 (1987)

    Google Scholar 

  12. Todorov, V., Filzmoser, P.: An object oriented framework for robust multivariate analysis. J. Stat. Softw. 32, 1–47 (2009)

    Google Scholar 

  13. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15, 265–286 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Todorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Todorov, V., Filzmoser, P. (2013). Comparing Classical and Robust Sparse PCA. In: Kruse, R., Berthold, M., Moewes, C., Gil, M., Grzegorzewski, P., Hryniewicz, O. (eds) Synergies of Soft Computing and Statistics for Intelligent Data Analysis. Advances in Intelligent Systems and Computing, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33042-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33042-1_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33041-4

  • Online ISBN: 978-3-642-33042-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics